Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Soriano, Rafael
dc.date.accessioned2023-03-28T12:39:20Z
dc.date.available2023-03-28T12:39:20Z
dc.date.issued2021-12-20
dc.identifier.citationPublished version: López-Soriano, R., Montoro, L., & Sciunzi, B. (2023). Symmetry and monotonicity results for solutions of vectorial 𝑝-Stokes systems. Transactions of the American Mathematical Society. [https://doi.org/10.1090/tran/8867]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80910
dc.description.abstractIn this paper we shall study qualitative properties of a p-Stokes type system, namely -Delta pu = - div(|Du|p-2Du) = f (x, u) in omega, where Delta p is the p-Laplacian vectorial operator. More precisely, under suitable assumptions on the domain omega and the function f, it is deduced that system solutions are symmetric and monotone. Our main results are derived from a vectorial version of the weak and strong comparison principles, which enable to proceed with the moving-planes technique for systems. As far as we know, these are the first qualitative kind results involving vectorial operators.es_ES
dc.description.sponsorshipSpanish Government PID2019-106122GB-I00/AEI/10.3039/501100011033 Ministry of Education, Universities and Research (MIUR) Research Projects of National Relevance (PRIN) 2017JPCAPN Spanish Government PDI2019-110712GB-100es_ES
dc.language.isoenges_ES
dc.publisherAmerican Mathematical Societyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectp-Stokes systemes_ES
dc.subjectp-Laplacian systemes_ES
dc.subjectComparison principlees_ES
dc.subjectMoving plane methodes_ES
dc.titleSymmetry and monotonicity results for solutions of vectorial p-stokes systemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional