Afficher la notice abrégée

dc.contributor.authorAdamuz Hinojosa, Óscar Ramón 
dc.contributor.authorSciancalepore, Vincenzo
dc.contributor.authorAmeigeiras Gutiérrez, Pablo José 
dc.contributor.authorLópez Soler, Juan Manuel 
dc.contributor.authorCosta Pérez, Xavier
dc.date.accessioned2023-03-28T10:43:52Z
dc.date.available2023-03-28T10:43:52Z
dc.date.issued2022
dc.identifier.citationO. Adamuz-Hinojosa... [et al.]. "A Stochastic Network Calculus (SNC)-based model for planning B5G uRLLC RAN slices," IEEE Transactions on Wireless Communications, Accepted. DOI: [10.1109/TWC.2022.3203937]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80898
dc.description.abstractRadio Access Network (RAN) slicing involves several challenges. In particular, the Mobile Network Operator (MNO) must ensure —before deploying each slice—that corresponding requirements can be met throughout its lifetime. For ultra-Reliable Low Latency Communication (uRLLC) slices, the MNO must guarantee the packet transmission delay within a delay budget with a certain probability. Most existing solutions focus on allocating dynamically radio resources to maximize the number of packets, whose transmission delay is within the delay budget. However, these solutions do not ensure the violation probability is below a target value in the long term. In this paper, we focus on slicing from a planning perspective. Specifically, we propose a Stochastic Network Calculus (SNC)-based model, which given the amount of radio resources allocated for a uRLLC slice, the target violation probability and the traffic demand distribution, provides the delay bound for such conditions. Additionally, we propose heuristics for planning uRLLC slices. Interestingly, such heuristics benefit from the proposed SNC-based model to compute the amount of radio resources to be assigned to each slice while its delay bound, given a target violation probability, is within the delay budget. We validate the SNC-based model and demonstrate the effectiveness of the heuristics.es_ES
dc.description.sponsorshipThis work is partially supported by the H2020 research and innovation project 5G-CLARITY (Grant No. 871428); the Spanish Ministry of Economy and Competitiveness, The European Regional Development Fund (Project PID2019-108713RB-C53); and the Spanish Ministry of Education, Culture and Sport (FPU Grant 17/01844)es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectB5Ges_ES
dc.subjectRAN slicinges_ES
dc.subjectuRLLC serviceses_ES
dc.subjectStochastic network calculuses_ES
dc.subjectDelay bound modelinges_ES
dc.titleA Stochastic Network Calculus (SNC)-based model for planning B5G uRLLC RAN sliceses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/871428es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/TWC.2022.3203937
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional