Mostrar el registro sencillo del ítem

dc.contributor.authorMorcillo Jiménez, Roberto
dc.contributor.authorGutiérrez Batista, Karel 
dc.contributor.authorGómez Romero, Juan 
dc.date.accessioned2023-03-27T11:21:48Z
dc.date.available2023-03-27T11:21:48Z
dc.date.issued2023-02-04
dc.identifier.citationMorcillo-Jimenez, R.; Gutiérrez-Batista, K.; Gómez-Romero, J. TSxtend: A Tool for Batch Analysis of Temporal Sensor Data. Energies 2023, 16, 1581. [https://doi.org/10.3390/en16041581]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80874
dc.description.abstractPre-processing and analysis of sensor data present several challenges due to their increasingly complex structure and lack of consistency. In this paper, we present TSxtend, a software tool that allows non-programmers to transform, clean, and analyze temporal sensor data by defining and executing process workflows in a declarative language. TSxtend integrates several existing techniques for temporal data partitioning, cleaning, and imputation, along with state-of-the-art machine learning algorithms for prediction and tools for experiment definition and tracking. Moreover, the modular architecture of the tool facilitates the incorporation of additional methods. The examples presented in this paper using the ASHRAE Great Energy Predictor dataset show that TSxtend is particularly effective to analyze energy data.es_ES
dc.description.sponsorshipFEDER/Junta de Andalucia A-TIC-244-UGR20es_ES
dc.description.sponsorshipMinistry of Science and Innovation, Spain (MICINN)es_ES
dc.description.sponsorshipSpanish Government PID2021-125537NA-I00es_ES
dc.description.sponsorshipNextGenerationEU funds MIA.2021.M04.0008es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTime serieses_ES
dc.subjectPre-processinges_ES
dc.subjectPredictiones_ES
dc.subjectMachine learninges_ES
dc.subjectDeep learninges_ES
dc.titleTSxtend: A Tool for Batch Analysis of Temporal Sensor Dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/en16041581
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional