Afficher la notice abrégée

dc.contributor.authorFomin, Mykola
dc.contributor.authorPasadas Cantos, Francisco 
dc.contributor.authorGonzález Marín, Enrique 
dc.contributor.authorMedina Rull, Alberto 
dc.contributor.authorGarcía Ruiz, Francisco Javier 
dc.contributor.authorGodoy Medina, Andrés 
dc.date.accessioned2023-03-24T08:56:18Z
dc.date.available2023-03-24T08:56:18Z
dc.date.issued2023-02-28
dc.identifier.citationFomin, M... [et al.]. Graphene-on-Silicon Hybrid Field-Effect Transistors. Adv. Electron. Mater. 2023, 2201083. [https://doi.org/10.1002/aelm.202201083]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80798
dc.description.abstractThe combination of graphene and silicon in hybrid electronic devices has attracted increasing attention over the last decade. Here, a unique technology of graphene-on-silicon heterostructures as solution-gated transistors for bioelectronics applications is presented. The proposed graphene-onsilicon field-effect transistors (GoSFETs) are fabricated by exploiting various conformations of channel doping and dimensions. The fabricated devices demonstrate hybrid behavior with features specific to both graphene and silicon, which are rationalized via a comprehensive physics-based compact model which is purposely implemented and validated against measured data. The developed theory corroborates that the device hybrid behavior can be explained in terms of two independent silicon and graphene carrier transport channels, which are, however, strongly electrostatically coupled. Although GoSFET transconductance and carrier mobility are found to be lower than in conventional silicon or graphene field-effect transistors, it is observed that the combination of both materials within the hybrid channel contributes uniquely to the electrical response. Specifically, it is found that the graphene sheet acts as a shield for the silicon channel, giving rise to a nonuniform potential distribution along it, which impacts the transport, especially at the subthreshold region, due to non-negligible diffusion current.es_ES
dc.description.sponsorshipMCIN/AEI PID2020-116518GB-I00es_ES
dc.description.sponsorshipFEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades A-TIC-646-UGR20 B-RNM-375-UGR18 PY20_00633es_ES
dc.description.sponsorshipEuropean Commission 825213es_ES
dc.description.sponsorshipPAIDI 2020es_ES
dc.description.sponsorshipEuropean Social Fund Operational Programme 2014-2020 20804es_ES
dc.description.sponsorshipMCIN/AEI/PTA grant PTA2020-018250-Ies_ES
dc.description.sponsorshipProjekt DEALes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBioelectronicses_ES
dc.subjectCompact modelinges_ES
dc.subjectDrift-diffusion modelinges_ES
dc.subjectElectrolytegated transistorses_ES
dc.subjectField-effect transistores_ES
dc.subjectGraphenees_ES
dc.subjectGraphene-on-silicones_ES
dc.subjectHybrides_ES
dc.subjectSilicon es_ES
dc.titleGraphene-on-Silicon Hybrid Field-Effect Transistorses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/825213es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/aelm.202201083
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional