Afficher la notice abrégée

dc.contributor.authorWang, Wei
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2023-03-23T09:49:02Z
dc.date.available2023-03-23T09:49:02Z
dc.date.issued2022-11-18
dc.identifier.citationWANG, W... [et al.] (2023). PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN. BIOCELL, 47(2), 373–384. Doi: [10.32604/biocell.2023.025905]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80782
dc.description.abstractSince 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, posing an unignorable threat to the global economy and human health. It is a disease caused by severe acute respiratory syndrome coronavirus 2, a single-stranded RNA virus of the genus Betacoronavirus. This virus is highly infectious and relies on its angiotensin-converting enzyme 2-receptor to enter cells. With the increase in the number of confirmed COVID-19 diagnoses, the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly apparent. Deep learning-based computer-aided diagnosis models with high generalisability can effectively alleviate this pressure. Hyperparameter tuning is essential in training such models and significantly impacts their final performance and training speed. However, traditional hyperparameter tuning methods are usually time-consuming and unstable. To solve this issue, we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the proposed approach can reduce human involvement. Also, the optimisation algorithm can select the combination of hyperparameters in a targeted manner, thus stably achieving a solution closer to the global optimum. Experimentally, the PSTCNN can obtain quite excellent results, with a sensitivity of 93.65% ± 1.86%, a specificity of 94.32% ± 2.07%, a precision of 94.30% ± 2.04%, an accuracy of 93.99% ± 1.78%, an F1-score of 93.97% ± 1.78%, Matthews Correlation Coefficient of 87.99% ± 3.56%, and Fowlkes-Mallows Index of 93.97% ± 1.78%. Our experiments demonstrate that compared to traditional methods, hyperparameter tuning of the model using an optimisation algorithm is faster and more effective.es_ES
dc.description.sponsorshipMedical Research Council Confidence in Concept Award, UK MC_PC_17171es_ES
dc.description.sponsorshipRoyal Society International Exchanges Cost Share Award, UK RP202G0230es_ES
dc.description.sponsorshipBritish Heart Foundation Accelerator Award, UK AA\18\3\34220es_ES
dc.description.sponsorshipHope Foundation for Cancer Research, UK RM60G0680es_ES
dc.description.sponsorshipGlobal Challenges Research Fund (GCRF), UK P202PF11es_ES
dc.description.sponsorshipSino-UK Industrial Fund, UK RP202G0289es_ES
dc.description.sponsorshipLIAS Pioneering Partnerships Award, UK P202ED10es_ES
dc.description.sponsorshipData Science Enhancement Fund, UK P202RE237es_ES
dc.description.sponsorshipGuangxi Key Laboratory of Trusted Software, CN kx201901es_ES
dc.language.isoenges_ES
dc.publisherTech Sciencees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCOVID-19es_ES
dc.subjectSARS-CoV-2es_ES
dc.subjectParticle swarm optimisationes_ES
dc.subjectConvolutional neural networkes_ES
dc.subjectHyperparameters tuninges_ES
dc.titlePSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNNes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.32604/biocell.2023.025905
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional