Mostrar el registro sencillo del ítem

dc.contributor.authorRoselló Casado, Eros
dc.contributor.authorGómez Alanís, Alejandro 
dc.contributor.authorChica Villar, Manuel
dc.contributor.authorGómez García, Ángel Manuel 
dc.contributor.authorGonzález López, José Andrés 
dc.contributor.authorPeinado Herreros, Antonio Miguel 
dc.date.accessioned2023-03-16T07:21:15Z
dc.date.available2023-03-16T07:21:15Z
dc.date.issued2022-11
dc.identifier.urihttps://hdl.handle.net/10481/80609
dc.description.abstractBiometric systems are exposed to spoofing attacks which may compromise their security, and automatic speaker verification (ASV) is no exception. To increase the robustness against such attacks, anti-spoofing systems have been proposed for the de- tection of spoofed audio attacks. However, most of these sys- tems can not capture long-term feature dependencies and can only extract local features. While transformers are an excellent solution for the exploitation of these long-distance correlations, they may degrade local details. On the contrary, convolutional neural networks (CNNs) are a powerful tool for extracting lo- cal features but not so much for capturing global representa- tions. The conformer is a model that combines the best of both techniques, CNNs and transformers, to model both local and global dependencies and has been used for speech recogni- tion achieving state-of-the-art performance. While conformers have been mainly applied to sequence-to-sequence problems, in this work we make a preliminary study of their adaptation to a binary classification task such as anti-spoofing, with focus on synthesis and voice-conversion-based attacks. To evaluate our proposals, experiments were carried out on the ASVspoof 2019 logical access database. The experimental results show that the proposed system can obtain encouraging results, although more research will be required in order to outperform other state-of- the-art systems.es_ES
dc.description.sponsorshipProject PID2019-104206GB-I00 funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Proyecto PY20_00902es_ES
dc.language.isoenges_ES
dc.publisherISCA - Iberspeech 2022es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSpoofing detectiones_ES
dc.subjectDeep learninges_ES
dc.subjectConformerses_ES
dc.titleOn the Application of Conformers to Logical Access Voice Spoofing Attack Detectiones_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21437/IberSPEECH.2022-37
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional