Mostrar el registro sencillo del ítem

dc.contributor.authorKamble, Madhu R.
dc.contributor.authorGonzález López, José Andrés 
dc.contributor.authorGrau, Teresa
dc.contributor.authorEspin, Juan M.
dc.contributor.authorCascioli, Lorenzo
dc.contributor.authorHuang, Yiqing
dc.contributor.authorGómez Alanís, Alejandro 
dc.contributor.authorPatino, José
dc.contributor.authorFont, Roberto
dc.contributor.authorPeinado Herreros, Antonio Miguel 
dc.contributor.authorGómez García, Ángel Manuel 
dc.contributor.authorEvans, Nicholas
dc.contributor.authorZuluaga, Maria A.
dc.contributor.authorMassimiliano, Todisco
dc.date.accessioned2023-03-14T07:59:21Z
dc.date.available2023-03-14T07:59:21Z
dc.date.issued2021-09
dc.identifier.urihttps://hdl.handle.net/10481/80567
dc.description.abstractThe COVID-19 pandemic has led to the saturation of public health services worldwide. In this scenario, the early diagnosis of SARS-Cov-2 infections can help to stop or slow the spread of the virus and to manage the demand upon health services. This is especially important when resources are also being stretched by heightened demand linked to other seasonal diseases, such as the flu. In this context, the organisers of the DiCOVA 2021 challenge have collected a database with the aim of diagnosing COVID-19 through the use of coughing audio samples. This work presents the details of the automatic system for COVID-19 detection from cough recordings presented by team PANACEA. This team consists of researchers from two European academic institutions and one company: EURECOM (France), University of Granada (Spain), and Biometric Vox S.L. (Spain). We de- veloped several systems based on established signal processing and machine learning methods. Our best system employs a Tea- ger energy operator cepstral coefficients (TECCs) based front- end and Light gradient boosting machine (LightGBM) back- end. The AUC obtained by this system on the test set is 76.31% which corresponds to a 10% improvement over the official base- line.es_ES
dc.description.sponsorshipPID2019-104206GB- I00/SRA/10.13039/501100011033es_ES
dc.description.sponsorshipPID2019-108040RB- C22/SRA/10.13039/501100011033es_ES
dc.description.sponsorshipRESPECT project funded by the French Agence Nationale de la Recherche (ANR)es_ES
dc.description.sponsorshipGerman Research Foundation Deutsche Forschungsgemeinschaft (DFG)es_ES
dc.description.sponsorshipJuan de la Cierva- Incorporation Fellowship from the Spanish Ministry of Science, Innovation and Universities (IJCI-2017-32926)es_ES
dc.language.isoenges_ES
dc.publisherProceedings of INTERSPEECH 2021es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCOVID-19es_ES
dc.subjectRespiratory soundses_ES
dc.subjectMachine learninges_ES
dc.subjectDisease diagnosises_ES
dc.subjectHealthcarees_ES
dc.titlePANACEA cough sound- based diagnosis of COVID-19 for the DiCOVA 2021 Challengees_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.21437/Interspeech.2021-1062
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional