Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Rodríguez, Natalia Ana 
dc.contributor.authorBinkyte, Ruta
dc.contributor.authorBakkali, Wafae
dc.contributor.authorBookseller, Sannidhi
dc.contributor.authorTubaro, Paola
dc.contributor.authorBacevičius, Andrius
dc.contributor.authorZhioua, Sami
dc.contributor.authorChatila, Raja
dc.date.accessioned2023-03-09T09:20:28Z
dc.date.available2023-03-09T09:20:28Z
dc.date.issued2023-01-12
dc.identifier.citationNatalia Díaz-Rodríguez... [et al.]. Gender and sex bias in COVID-19 epidemiological data through the lens of causality, Information Processing & Management, Volume 60, Issue 3, 2023, 103276, ISSN 0306-4573, [https://doi.org/10.1016/j.ipm.2023.103276]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80485
dc.description.abstractThe COVID-19 pandemic has spurred a large amount of experimental and observational studies reporting clear correlation between the risk of developing severe COVID-19 (or dying from it) and whether the individual is male or female. This paper is an attempt to explain the supposed male vulnerability to COVID-19 using a causal approach. We proceed by identifying a set of confounding and mediating factors, based on the review of epidemiological literature and analysis of sex-dis-aggregated data. Those factors are then taken into consideration to produce explainable and fair prediction and decision models from observational data. The paper outlines how non-causal models can motivate discriminatory policies such as biased allocation of the limited resources in intensive care units (ICUs). The objective is to anticipate and avoid disparate impact and discrimination, by considering causal knowledge and causalbased techniques to compliment the collection and analysis of observational big-data. The hope is to contribute to more careful use of health related information access systems for developing fair and robust predictive models.es_ES
dc.description.sponsorshipERC grant Hypatia under the European Union's Horizon 2020 research and innovation programme 835294es_ES
dc.description.sponsorshipSpanish Government Juan de la Cierva Incorporacion contract IJC2019-039152-Ies_ES
dc.description.sponsorshipGoogle Research Scholar Grantes_ES
dc.description.sponsorshipMarie Sklodowska-Curie Actions (MSCA) Postdoctoral Fellowship 101059332es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExplainabilityes_ES
dc.subjectCausalityes_ES
dc.subjectCausal fairnesses_ES
dc.subjectCOVID-19es_ES
dc.subjectSexes_ES
dc.subjectGenderes_ES
dc.subjectEquality es_ES
dc.subjectArtificial intelligence es_ES
dc.subjectHealthcarees_ES
dc.titleGender and sex bias in COVID-19 epidemiological data through the lens of causalityes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/835294es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ipm.2023.103276
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional