Mostrar el registro sencillo del ítem
Gender and sex bias in COVID-19 epidemiological data through the lens of causality
dc.contributor.author | Díaz Rodríguez, Natalia Ana | |
dc.contributor.author | Binkyte, Ruta | |
dc.contributor.author | Bakkali, Wafae | |
dc.contributor.author | Bookseller, Sannidhi | |
dc.contributor.author | Tubaro, Paola | |
dc.contributor.author | Bacevičius, Andrius | |
dc.contributor.author | Zhioua, Sami | |
dc.contributor.author | Chatila, Raja | |
dc.date.accessioned | 2023-03-09T09:20:28Z | |
dc.date.available | 2023-03-09T09:20:28Z | |
dc.date.issued | 2023-01-12 | |
dc.identifier.citation | Natalia Díaz-Rodríguez... [et al.]. Gender and sex bias in COVID-19 epidemiological data through the lens of causality, Information Processing & Management, Volume 60, Issue 3, 2023, 103276, ISSN 0306-4573, [https://doi.org/10.1016/j.ipm.2023.103276] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/80485 | |
dc.description.abstract | The COVID-19 pandemic has spurred a large amount of experimental and observational studies reporting clear correlation between the risk of developing severe COVID-19 (or dying from it) and whether the individual is male or female. This paper is an attempt to explain the supposed male vulnerability to COVID-19 using a causal approach. We proceed by identifying a set of confounding and mediating factors, based on the review of epidemiological literature and analysis of sex-dis-aggregated data. Those factors are then taken into consideration to produce explainable and fair prediction and decision models from observational data. The paper outlines how non-causal models can motivate discriminatory policies such as biased allocation of the limited resources in intensive care units (ICUs). The objective is to anticipate and avoid disparate impact and discrimination, by considering causal knowledge and causalbased techniques to compliment the collection and analysis of observational big-data. The hope is to contribute to more careful use of health related information access systems for developing fair and robust predictive models. | es_ES |
dc.description.sponsorship | ERC grant Hypatia under the European Union's Horizon 2020 research and innovation programme 835294 | es_ES |
dc.description.sponsorship | Spanish Government Juan de la Cierva Incorporacion contract IJC2019-039152-I | es_ES |
dc.description.sponsorship | Google Research Scholar Grant | es_ES |
dc.description.sponsorship | Marie Sklodowska-Curie Actions (MSCA) Postdoctoral Fellowship 101059332 | es_ES |
dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Explainability | es_ES |
dc.subject | Causality | es_ES |
dc.subject | Causal fairness | es_ES |
dc.subject | COVID-19 | es_ES |
dc.subject | Sex | es_ES |
dc.subject | Gender | es_ES |
dc.subject | Equality | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Healthcare | es_ES |
dc.title | Gender and sex bias in COVID-19 epidemiological data through the lens of causality | es_ES |
dc.type | journal article | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/835294 | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1016/j.ipm.2023.103276 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.