Mostrar el registro sencillo del ítem

dc.contributor.authorCama Pinto, Dora
dc.contributor.authorDamas Hermoso, Miguel 
dc.contributor.authorHolgado Terriza, Juan Antonio 
dc.date.accessioned2023-03-03T08:28:22Z
dc.date.available2023-03-03T08:28:22Z
dc.date.issued2023-01-13
dc.identifier.citationCama-Pinto, D... [et al.]. A Deep Learning Model of RadioWave Propagation for Precision Agriculture and Sensor System in Greenhouses. Agronomy 2023, 13, 244. [https://doi.org/10.3390/agronomy13010244]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80364
dc.description.abstractThe production of crops in greenhouses will ensure the demand for food for the world’s population in the coming decades. Precision agriculture is an important tool for this purpose, supported among other things, by the technology of wireless sensor networks (WSN) in the monitoring of agronomic parameters. Therefore, prior planning of the deployment of WSN nodes is relevant because their coverage decreases when the radio waves are attenuated by the foliage of the plantation. In that sense, the method proposed in this study applies Deep Learning to develop an empirical model of radio wave attenuation when it crosses vegetation that includes height and distance between the transceivers of the WSN nodes. The model quality is expressed via the parameters cross-validation, R2 of 0.966, while its generalized error is 0.920 verifying the reliability of the empirical model.es_ES
dc.description.sponsorshipAUIP (Iberoamerican University Association for Postgraduate Studies)es_ES
dc.description.sponsorshipSpanish Ministry of Science, Innovation, and Universities under the programme "Proyectos de I+D de Generacion de Conocimiento" of the national programme for the generation of scientific and technological knowledge and strengthening of the R+D+I system PGC2018-098813-B-C33es_ES
dc.description.sponsorshipUAL-FEDER 2020 UAL2020-TIC-A2080es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDeep learninges_ES
dc.subjectNeural networkes_ES
dc.subjectPrecision agriculturees_ES
dc.subjectPropagation modeles_ES
dc.subjectWireless sensor networkses_ES
dc.titleA Deep Learning Model of Radio Wave Propagation for Precision Agriculture and Sensor System in Greenhouseses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/agronomy13010244
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional