Mostrar el registro sencillo del ítem

dc.contributor.authorPeralta Pereira, Antonio Miguel 
dc.date.accessioned2023-03-03T07:37:07Z
dc.date.available2023-03-03T07:37:07Z
dc.date.issued2022
dc.identifier.citationPeraltaa, A. M. (2022). On the Extension of Surjective Isometries whose Domain is the Unit Sphere of a Space of Compact Operators. Filomat, 36(9), 3075-3090. [https://doi.org/10.2298/FIL2209075P]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80357
dc.description.abstractWe prove that every surjective isometry from the unit sphere of the space K(H), of all compact operators on an arbitrary complex Hilbert space H, onto the unit sphere of an arbitrary real Banach space Y can be extended to a surjective real linear isometry from K(H) onto Y. This is probably the first example of an infinite dimensional non-commutative C∗-algebra containing no unitaries and satisfying the Mazur– Ulam property. We also prove that all compact C∗-algebras and all weakly compact JB∗-triples satisfy the Mazur–Ulam property.es_ES
dc.description.sponsorshipMCIN/AEI PGC2018-093332-B-I00es_ES
dc.description.sponsorshipPID2021-122126NB-C31es_ES
dc.description.sponsorshipERDF A way of making Europees_ES
dc.description.sponsorshipJunta de Andalucia FQM375 PY20 00255es_ES
dc.description.sponsorshipIMAG-Maria de Maeztu grant CEX2020-001105-Mes_ES
dc.language.isoenges_ES
dc.publisherUniversity of Nises_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTingley’s problemes_ES
dc.subjectMazur-Ulam propertyes_ES
dc.subjectExtension of isometrieses_ES
dc.subjectCompact operatorses_ES
dc.subjectCompact C∗-algebrases_ES
dc.titleOn the Extension of Surjective Isometries whose Domain is the Unit Sphere of a Space of Compact Operatorses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.2298/FIL2209075P
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional