• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Capítulos de Libros
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Capítulos de Libros
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Learning Approaches to Dialogue Management in Conversational Systems

[PDF] 22___SOCO_2021___Preprint.pdf (847.2Ko)
Identificadores
URI: https://hdl.handle.net/10481/80256
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Griol Barres, David; Callejas Carrión, Zoraida
Editorial
Springer
Materia
Dialogue systems
 
Dialogue management
 
Statistical techniques
 
Deep learning
 
Date
2022
Referencia bibliográfica
Published version: Griol, D., Callejas, Z. (2022). A Comparison of Learning Approaches to Dialogue Management in Conversational Systems. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. [https://doi.org/10.1007/978-3-030-87869-6_7]
Résumé
Dialogue systems have an increasingly higher number of applications and so their development is raising interest both in academic and industrial setting. Dialogue management is a key aspect for the development of these systems, as it is in charge of the decision making processes and the identification of the most appropriate responses to the user inputs. In this paper we compare different statistical techniques to train dialogue managers using generally available corpora at the disposal for the scientific community. Our results show that the use of generative models and in particular an intent classifier with Neural Networks and Seq2Seq using GRU cells attain the best accuracy for dialogue management.
Colecciones
  • OpenAIRE (Open Access Infrastructure for Research in Europe)
  • TIC018 - Capítulos de Libros

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire