• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Capítulos de Libros
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Capítulos de Libros
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feature Set Ensembles for Sentiment Analysis of Tweets

[PDF] GriolKanagalCallejas21.pdf (482.6Kb)
Identificadores
URI: https://hdl.handle.net/10481/80255
DOI: https://doi.org/10.1007/978-3-030-51870-7_10
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Griol Barres, David; Kanagal-Balakrishna, C.; Callejas Carrión, Zoraida
Editorial
Springer
Materia
Sentiment analysis
 
Twitter
 
Date
2021
Referencia bibliográfica
This is a pre-print version of the chapter: Griol, D., Kanagal-Balakrishna, C., Callejas, Z. (2021). Feature Set Ensembles for Sentiment Analysis of Tweets. In: Phillips-Wren, G., Esposito, A., Jain, L.C. (eds) Advances in Data Science: Methodologies and Applications. Intelligent Systems Reference Library, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-030-51870-7_10 (https://link.springer.com/chapter/10. 1007/978-3-030-51870-7_10)
Abstract
In recent years, sentiment analysis has attracted a lot of research attention due to the explosive growth of online social media usage and the abundant user data they generate. Twitter is one of the most popular online social networks and a microblogging platform where users share their thoughts and opinions on various topics. Twitter enforces a character limit on tweets, which makes users find creative ways to express themselves using acronyms, abbreviations, emoticons, etc. Additionally, communication on Twitter does not always follow standard grammar or spelling rules. These peculiarities can be used as features for performing sentiment classification of tweets. In this chapter, we propose a Maximum Entropy classifier that uses an ensemble of feature sets that encompass opinion lexicons, n-grams and word clusters to boost the performance of the sentiment classifier. We also demonstrate that using several opinion lexicons as feature sets provides a better performance than using just one, at the same time as adding word cluster information enriches the feature space.
Collections
  • OpenAIRE (Open Access Infrastructure for Research in Europe)
  • TIC018 - Capítulos de Libros

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback