Mostrar el registro sencillo del ítem

dc.contributor.authorBorke Birgin, Hasan
dc.contributor.authorGarcía Macías, Enrique 
dc.contributor.authorD’Alessandro, Antonella
dc.contributor.authorUbertini, Filippo
dc.date.accessioned2023-02-24T08:09:29Z
dc.date.available2023-02-24T08:09:29Z
dc.date.issued2023-03-10
dc.identifier.citationConstruction and Building Materials 369 (2023) 130538 [https://doi.org/10.1016/j.conbuildmat.2023.130538]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80194
dc.description.abstractOverloaded vehicles are the primary cause of accelerated degradation of road infrastructures. In this context, although weigh-in-motion (WIM) systems are most efficient to enforce weight regulations, current technologies require costly investments limiting their extensive implementation. Recent advances in multifunctional composites enabled cost-efficient alternatives in the form of smart pavements. Nevertheless, the need for a stable power supply still represents a major practical limitation. This work presents a novel proof-of-concept self-sustainable WIM technology combining smart pavements and vibration-based energy harvesting (EH). The feasibility of piezoelectric bimorph cantilevered beams to harvest traffic-induced vibrations is firstly investigated, followed by the demonstration of the proposed technology under laboratory conditions. The main original contributions of this work comprise (i) the development of a new self-powered data acquisition system, (ii) a novel approach for the fabrication and electromechanical testing of the piezoresistive composite pavement, and (iii) laboratory feasibility analysis of the developed EH unit to conduct traffic load identification through electrical resistivity measurements of the smart pavement. While the presented results conclude the need for dense EH networks or combinations of different EH technologies to attain complete self-sustainability, this work represents an initial feasibility evidence paving the way towards the development of self-powered low-cost WIM systems.es_ES
dc.description.sponsorshipMarie Skłodowska-Curie Innovative Training Network (MSCA ITN) ‘‘SAFERUP!’’ project (Grant Agreement No. 765057)es_ES
dc.description.sponsorshipFondo integrativo speciale per la ricerca (FISR) to develop autonomous sensing systems based on smart materialses_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectEnergy harvestinges_ES
dc.subjectComposites es_ES
dc.subjectPiezoelectric harvesteres_ES
dc.subjectSelf-sensing materialses_ES
dc.subjectWeigh-in-motiones_ES
dc.titleSelf-powered weigh-in-motion system combining vibration energy harvesting and self-sensing composite pavementses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/SAFERUP 765057es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.conbuildmat.2023.130538
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NoDerivatives 4.0 Internacional