Show simple item record

dc.contributor.authorRueda Zoca, Abraham
dc.date.accessioned2023-02-22T08:29:38Z
dc.date.available2023-02-22T08:29:38Z
dc.date.issued2023-01-27
dc.identifier.citationRueda Zoca, A. Banach spaces which always produce octahedral spaces of operators. Collect. Math. (2023). [https://doi.org/10.1007/s13348-023-00394-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80130
dc.description.abstractWe characterise those Banach spaces X which satisfy that L(Y, X) is octahedral for every non-zero Banach space Y. They are those satisfying that, for every finite dimensional subspace Z, l(infinity) can be finitely-representable in a part of X kind of l(1)-orthogonal to Z. We also prove that L(Y, X) is octahedral for every Y if, and only if, L(l(n)(p), X) is octahedral for every n is an element of N and 1 < p < infinity. Finally, we find examples of Banach spaces satisfying the above conditions like Lip(0)(M) spaces with octahedral norms or L-1-preduals with the Daugavet property.es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSpaces of operatorses_ES
dc.subjectUniversally octahedrales_ES
dc.subjectFinite representabilityes_ES
dc.titleBanach spaces which always produce octahedral spaces of operatorses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s13348-023-00394-9
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional