Afficher la notice abrégée

dc.contributor.authorGallego Molina, Nicolás J.
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.date.accessioned2023-02-21T11:38:43Z
dc.date.available2023-02-21T11:38:43Z
dc.date.issued2022-01-05
dc.identifier.citationNicolás J. Gallego-Molina... [et al.]. Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis, Knowledge-Based Systems, Volume 240, 2022, 108098, ISSN 0950-7051, [https://doi.org/10.1016/j.knosys.2021.108098]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80107
dc.description.abstractComplex network analysis has an increasing relevance in the study of neurological disorders, enhancing the knowledge of brain’s structural and functional organization. Network structure and efficiency reveal different brain states along with different ways of processing the information. This work is structured around the exploratory analysis of the brain processes involved in low-level auditory processing. A complex network analysis was performed on the basis of brain coupling obtained from electroencephalography (EEG) data, while different auditory stimuli were presented to the subjects. This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to explore differences between control and dyslexic subjects. Coupling data allows the construction of a graph, and then, graph theory is used to study the characteristics of the complex networks throughout time for control and dyslexic subjects. This results in a set of metrics including clustering coefficient, path length and small-worldness. From this, different characteristics linked to the temporal evolution of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia as losing the small-world topology. Finally, these graph-based features are used to classify between control and dyslexic subjects by means of a Support Vector Machine (SVM).es_ES
dc.description.sponsorshipSpanish Government PGC2018-098813-B-C32es_ES
dc.description.sponsorshipJunta de Andalucia UMA20-FEDERJA-086es_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipNVIDIA Corporationes_ES
dc.description.sponsorshipMinistry of Science and Innovation, Spain (MICINN) Spanish Governmentes_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipUniversidad de Malaga/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDyslexia diagnosises_ES
dc.subjectEEGes_ES
dc.subjectComplex networkes_ES
dc.subjectPACes_ES
dc.titleComplex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.knosys.2021.108098
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional