Afficher la notice abrégée

dc.contributor.authorDu, Yinfeng
dc.contributor.authorMorente Molinera, Juan Antonio 
dc.contributor.authorHerrera Viedma, Enrique 
dc.date.accessioned2023-02-20T11:46:07Z
dc.date.available2023-02-20T11:46:07Z
dc.date.issued2023-01-09
dc.identifier.citationDu, Y... [et al.]. A Textual Data-Oriented Method for Doctor Selection in Online Health Communities. Sustainability 2023, 15, 1241. [https://doi.org/10.3390/su15021241]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80079
dc.description.abstractAs doctor–patient interactive platforms, online health communities (OHCs) offer patients massive information including doctor basic information and online patient reviews. However, how to develop a systematic framework for doctor selection in OHCs according to doctor basic information and online patient reviews is a challenged issue, which will be explored in this study. For doctor basic information, we define the quantification method and aggregate them to characterize relative influence of doctors. For online patient reviews, data analysis techniques (i.e., topics extraction and sentiment analysis) are used to mine the core attributes and evaluations. Subsequently, frequency weights and position weights are respectively determined by a frequency-oriented formula and a position score-based formula, which are integrated to obtain the final importance of attributes. Probabilistic linguistic-prospect theory-multiplicative multiobjective optimization by ratio analysis (PL-PT-MULTIMOORA) is proposed to analyze patient satisfactions on doctors. Finally, selection rules are made according to doctor influence and patient satisfactions so as to choose optimal and suboptimal doctors for rational or emotional patients. The designed textual data-driven method is successfully applied to analyze doctors from Haodf.com and some suggestions are given to help patients pick out optimal and suboptimal doctors.es_ES
dc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 72171182 71801175 71871171 72031009es_ES
dc.description.sponsorshipProject of Service Science and Innovation Key Laboratory of Sichuan Province KL2105es_ES
dc.description.sponsorshipProject of China Scholarship Council 202107000064 202007000143es_ES
dc.description.sponsorshipAndalusian government B-TIC-590-UGR20es_ES
dc.description.sponsorshipFEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades P20 00673 PID2019-103880RB-I00es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOnline health communitieses_ES
dc.subjectDoctor selectiones_ES
dc.subjectPatient satisfactions es_ES
dc.subjectImproved MULTIMOORAes_ES
dc.subjectSelection criteriaes_ES
dc.titleA Textual Data-Oriented Method for Doctor Selection in Online Health Communitieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/su15021241
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional