Afficher la notice abrégée

dc.contributor.authorPallante, Lorenzo
dc.contributor.authorMartos Núñez, María Vanesa 
dc.date.accessioned2023-02-15T13:30:59Z
dc.date.available2023-02-15T13:30:59Z
dc.date.issued2022-12-16
dc.identifier.citationPallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). [https://doi.org/10.1038/s41598-022-25935-3]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79985
dc.descriptionSupplementary Information The online version contains supplementary material available at https://doi.org/10. 1038/s41598-022-25935-3.es_ES
dc.description.abstractThe umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.es_ES
dc.description.sponsorshipVIRTUOUS project, funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie-RISE Grant Agreement No. 872181es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleToward a general and interpretable umami taste predictor using a multi‑objective machine learning approaches_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/Marie Sklodowska-Curie-RISE 872181es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1038/s41598-022-25935-3
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional