Mostrar el registro sencillo del ítem

dc.contributor.authorToro Domínguez, Daniel
dc.contributor.authorMartorell Marugán, Jordi 
dc.contributor.authorMartínez Bueno, Manuel 
dc.contributor.authorLópez Domínguez, Raúl 
dc.contributor.authorCarnero Montoro, Elena
dc.contributor.authorBarturen Briñas, Guillermo
dc.contributor.authorCarmona Sáez, Pedro 
dc.contributor.authorAlarcón Riquelme, Marta Eugenia 
dc.date.accessioned2023-02-10T08:33:05Z
dc.date.available2023-02-10T08:33:05Z
dc.date.issued2022-08-10
dc.identifier.citationDaniel Toro-Domínguez... [et al.]. Scoring personalized molecular portraits identify Systemic Lupus Erythematosus subtypes and predict individualized drug responses, symptomatology and disease progression, Briefings in Bioinformatics, Volume 23, Issue 5, September 2022, bbac332, [https://doi.org/10.1093/bib/bbac332]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79808
dc.description.abstractObjectives Systemic Lupus Erythematosus is a complex autoimmune disease that leads to significant worsening of quality of life and mortality. Flares appear unpredictably during the disease course and therapies used are often only partially effective. These challenges are mainly due to the molecular heterogeneity of the disease, and in this context, personalized medicine-based approaches offer major promise. With this work we intended to advance in that direction by developing MyPROSLE, an omic-based analytical workflow for measuring the molecular portrait of individual patients to support clinicians in their therapeutic decisions. Methods Immunological gene-modules were used to represent the transcriptome of the patients. A dysregulation score for each gene-module was calculated at the patient level based on averaged z-scores. Almost 6100 Lupus and 750 healthy samples were used to analyze the association among dysregulation scores, clinical manifestations, prognosis, flare and remission events and response to Tabalumab. Machine learning-based classification models were built to predict around 100 different clinical parameters based on personalized dysregulation scores. Results MyPROSLE allows to molecularly summarize patients in 206 gene-modules, clustered into nine main lupus signatures. The combination of these modules revealed highly differentiated pathological mechanisms. We found that the dysregulation of certain gene-modules is strongly associated with specific clinical manifestations, the occurrence of relapses or the presence of long-term remission and drug response. Therefore, MyPROSLE may be used to accurately predict these clinical outcomes. Conclusions MyPROSLE (https://myprosle.genyo.es) allows molecular characterization of individual Lupus patients and it extracts key molecular information to support more precise therapeutic decisions.es_ES
dc.description.sponsorshipPID2020-119032RB-I00 supported by MCIN/AEI/10.13039/501100011033es_ES
dc.description.sponsorshipFEDER and the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 831434 (3TR)es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020es_ES
dc.description.sponsorshipEFPIAes_ES
dc.description.sponsorshipFEDER/Junta de Andalucía-Consejer’a de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B-CTS-40-UGR20)es_ES
dc.description.sponsorship‘Consejería de Transformación Económica, Industria, Conocimiento y Universidades’ (CTEICU)es_ES
dc.description.sponsorshipEuropean Union through the European Social Fund (ESF) named ‘Andalucía se mueve con Europa”es_ES
dc.description.sponsorshipAndalusian ESF Operational Program 2014–2020es_ES
dc.description.sponsorshipISCIII CD18/00149es_ES
dc.description.sponsorshipMinisterio de Universidades (Spain’s Government) and the European Union – NextGenerationEUes_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectSystemic lupus erythematosus es_ES
dc.subjectAutoimmune diseases es_ES
dc.subjectComputational modelses_ES
dc.subjectMolecular profilinges_ES
dc.subjectPersonalized medicinees_ES
dc.titleScoring personalized molecular portraits identify Systemic Lupus Erythematosus subtypes and predict individualized drug responses, symptomatology and disease progressiones_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/bib/bbac332
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional