Mostrar el registro sencillo del ítem

dc.contributor.authorAguilera Martos, Ignacio 
dc.contributor.authorGarcía Vico, Ángel Miguel
dc.contributor.authorLuengo Martín, Julián 
dc.contributor.authorDamas Arroyo, Sergio 
dc.contributor.authorMelero Rus, Francisco Javier 
dc.contributor.authorValle-Alonso, José Javier
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2023-02-01T12:09:05Z
dc.date.available2023-02-01T12:09:05Z
dc.date.issued2023-01-14
dc.identifier.citationAguilera-Martos, I., García-Vico, Á. M., Luengo, J., Damas, S., Melero, F. J., Valle-Alonso, J. J., & Herrera, F. (2023). TSFEDL: A python library for time series spatio-temporal feature extraction and prediction using deep learning. Neurocomputing, 517, 223-228.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79524
dc.description.abstractThe combination of convolutional and recurrent neural networks is a promising framework. This arrangement allows the extraction of high-quality spatio-temporal features together with their temporal dependencies. This fact is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 22 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow + Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.es_ES
dc.description.sponsorshipThis work has been partially supported by the Contract UGRAM OTRI-4260 and the Regional Government of Andalusia, under the program ‘‘Personal Investigador Doctor”, reference DOC_00235. This work was also supported by project PID2020-119478 GB-I00 granted by Ministerio de Ciencia, Innovación y Universidades, and projects P18-FR-4961 and P18-FR-4262 by Proyectos I + D+i Junta de Andalucia 2018.es_ES
dc.language.isoenges_ES
dc.publisherNeurocomputinges_ES
dc.relation.ispartofseriesOriginal Software Publication;Vol. 517, pages 223-228
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectTime serieses_ES
dc.subjectDeep learninges_ES
dc.subjectPythones_ES
dc.titleTSFEDL: A python library for time series spatio-temporal feature extraction and prediction using deep learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2022.10.062
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional