Afficher la notice abrégée

dc.contributor.authorAbratenko, P.
dc.contributor.authorGarcía Gámez, Diego 
dc.contributor.authorMicroboone Collaboration
dc.date.accessioned2023-01-26T11:57:44Z
dc.date.available2023-01-26T11:57:44Z
dc.date.issued2022-05-23
dc.identifier.citationPublished version: P. Abratenko... [et al.]. 2022 JINST 17 P09015. [https://doi.org/10.1088/1748-0221/17/09/P09015]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79370
dc.description.abstractIn this article, we describe a modified implementation of Mask Region-based Convolutional Neural Networks (Mask-RCNN) for cosmic ray muon clustering in a liquid argon TPC and applied to MicroBooNE neutrino data. Our implementation of this network, called sMask-RCNN, uses sparse submanifold convolutions to increase processing speed on sparse datasets, and is compared to the original dense version in several metrics. The networks are trained to use wire readout images from the MicroBooNE liquid argon time projection chamber as input and produce individually labeled particle interactions within the image. These outputs are identified as either cosmic ray muon or electron neutrino interactions. We find that sMask-RCNN has an average pixel clustering efficiency of 85.9% compared to the dense network’s average pixel clustering efficiency of 89.1%. We demonstrate the ability of sMask-RCNN used in conjunction with MicroBooNE’s state-of-the-art Wire-Cell cosmic tagger to veto events containing only cosmic ray muons. The addition of sMask-RCNN to the Wire-Cell cosmic tagger removes 70% of the remaining cosmic ray muon background events at the same electron neutrino event signal efficiency. This event veto can provide 99.7% rejection of cosmic ray-only background events while maintaining an electron neutrino event-level signal efficiency of 80.1%. In addition to cosmic ray muon identification, sMask-RCNN could be used to extract features and identify different particle interaction types in other 3D-tracking detectors.es_ES
dc.description.sponsorshipFermi Research Alliance, LLC (FRA) DE-AC02-07CH11359es_ES
dc.description.sponsorshipUnited States Department of Energy (DOE) National Science Foundation (NSF)es_ES
dc.description.sponsorshipSwiss National Science Foundation (SNSF)es_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipUK Research & Innovation (UKRI)es_ES
dc.description.sponsorshipScience & Technology Facilities Council (STFC)es_ES
dc.description.sponsorshipRoyal Society of Londones_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipAlbert Einstein Center for Fundamental Physics, Bern, Switzerlandes_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physicses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectParticle identification methodses_ES
dc.subjectPattern recognitiones_ES
dc.subjectCluster findinges_ES
dc.subjectCalibration and fitting methodses_ES
dc.subjectTime projection chamberses_ES
dc.titleCosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNNes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional