Mostrar el registro sencillo del ítem

dc.contributor.authorSaleh, Ali 
dc.contributor.authorChiachío Ruano, Manuel 
dc.contributor.authorFernández Salas, Juan
dc.date.accessioned2023-01-26T08:04:28Z
dc.date.available2023-01-26T08:04:28Z
dc.date.issued2022-12-05
dc.identifier.citationAli Saleh... [et al.]. Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets, Reliability Engineering & System Safety, Volume 231, 2023, 109013, ISSN 0951-8320, [https://doi.org/10.1016/j.ress.2022.109013]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79349
dc.description.abstractWith the emerging monitoring technologies, condition-based maintenance is nowadays a reality for the wind energy industry. This is important to avoid unnecessary maintenance actions, which increase the operation and maintenance costs, along with the costs associated with downtime. However, condition-based maintenance requires a policy to transform system conditions into decision-making while considering monetary restrictions and energy productivity objectives. To address this challenge, an intelligent Petri net algorithm has been created and applied to model and optimize offshore wind turbines’ operation and maintenance. The proposed method combines advanced Petri net modelling with Reinforcement Learning and is formulated in a general manner so it can be applied to optimize any Petri net model. The resulting methodology is applied to a case study considering the operation and maintenance of a wind turbine using operation and degradation data. The results show that the proposed method is capable to reach optimal condition-based maintenance policy considering maximum availability (equal to 99.4%) and minimal operational costs.es_ES
dc.description.sponsorshipEuropean Commission 859957es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPetri netes_ES
dc.subjectReinforcement learninges_ES
dc.subjectQ-learninges_ES
dc.subjectOffshore wind turbineses_ES
dc.subjectCondition-based maintenancees_ES
dc.titleSelf-adaptive optimized maintenance of offshore wind turbines by intelligent Petri netses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/859957es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ress.2022.109013
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional