Mostrar el registro sencillo del ítem

dc.contributor.authorKaczmarek Majer, Katarzyna
dc.contributor.authorDíaz Rodríguez, Natalia Ana 
dc.date.accessioned2023-01-20T09:15:56Z
dc.date.available2023-01-20T09:15:56Z
dc.date.issued2022-10-08
dc.identifier.citationKatarzyna Kaczmarek-Majer... [et al.]. PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries, Information Sciences, Volume 614, 2022, Pages 374-399, ISSN 0020-0255, [https://doi.org/10.1016/j.ins.2022.10.010]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/79174
dc.description.abstractWe introduce an approach called PLENARY (exPlaining bLack-box modEls in Natural lAnguage thRough fuzzY linguistic summaries), which is an explainable classifier based on a data-driven predictive model. Neural learning is exploited to derive a predictive model based on two levels of labels associated with the data. Then, model explanations are derived through the popular SHapley Additive exPlanations (SHAP) tool and conveyed in a linguistic form via fuzzy linguistic summaries. The linguistic summarization allows translating the explanations of the model outputs provided by SHAP into statements expressed in natural language. PLENARY accounts for the imprecision related to model outputs by summarizing them into simple linguistic statements and for the imprecision related to the data labeling process by including additional domain knowledge in the form of middle-layer labels. PLENARY is validated on preprocessed speech signals collected from smartphones from patients with bipolar disorder and on publicly available mental health survey data. The experiments confirm that fuzzy linguistic summarization is an effective technique to support meta-analyses of the outputs of AI models. Also, PLENARY improves explainability by aggregating low-level attributes into high-level information granules, and by incorporating vague domain knowledge into a multi-task sequential and compositional multilayer perceptron. SHAP explanations translated into fuzzy linguistic summaries significantly improve understanding of the predictive modelling process and its outputs.es_ES
dc.description.sponsorshipSmall Grants Scheme within the research project "Bipolar disorder prediction with sensor-based semi-supervised Learning (BIPOLAR)" NOR/SGS/BIPO LAR/0239/2020-00es_ES
dc.description.sponsorshipEuropean Commission RPMA.01.02.00-14-5706/16-00es_ES
dc.description.sponsorshipSystems Research Institute Polish Academy of Scienceses_ES
dc.description.sponsorshipJuan de la Cierva Incorporacion grant - MCIN/AEI IJC2019-039152-Ies_ES
dc.description.sponsorshipGoogle Research Scholar Programes_ES
dc.description.sponsorshipItalian Ministry of University and Research through the European PON project AIM (Attraction and International Mobility) 1852414es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecteXplainable Artificial Intelligencees_ES
dc.subjectLinguistic summarieses_ES
dc.subjectGranular computinges_ES
dc.subjectFuzzy linguistic descriptionses_ES
dc.subjectMachine learninges_ES
dc.subjectNeural networkses_ES
dc.subjectBipolar disorderses_ES
dc.titlePLENARY: Explaining black-box models in natural language through fuzzy linguistic summarieses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ins.2022.10.010
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional