Mostrar el registro sencillo del ítem
Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation
dc.contributor.author | Pacheco García, Juan Luis | |
dc.contributor.author | Tienne Matos, Kelly | |
dc.contributor.author | Pey Rodríguez, Ángel Luis | |
dc.date.accessioned | 2023-01-16T12:47:37Z | |
dc.date.available | 2023-01-16T12:47:37Z | |
dc.date.issued | 2022-11-24 | |
dc.identifier.citation | Pacheco-Garcia JL... [et al.] (2022), Effect of naturally-occurring mutations on the stability and function of cancerassociated NQO1: Comparison of experiments and computation. Front. Mol. Biosci. 9:1063620. doi: [10.3389/fmolb.2022.1063620] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/79025 | |
dc.description.abstract | Recent advances in DNA sequencing technologies are revealing a large individual variability of the human genome. Our capacity to establish genotype-phenotype correlations in such large-scale is, however, limited. This task is particularly challenging due to the multifunctional nature of many proteins. Here we describe an extensive analysis of the stability and function of naturally-occurring variants (found in the COSMIC and gnomAD databases) of the cancer-associated human NAD(P)H:quinone oxidoreductase 1 (NQO1). First, we performed in silico saturation mutagenesis studies (>5,000 substitutions) aimed to identify regions in NQO1 important for stability and function. We then experimentally characterized twenty-two naturally-occurring variants in terms of protein levels during bacterial expression, solubility, thermal stability, and coenzyme binding. These studies showed a good overall correlation between experimental analysis and computational predictions; also the magnitude of the effects of the substitutions are similarly distributed in variants from the COSMIC and gnomAD databases. Outliers in these experimental-computational genotype-phenotype correlations remain, and we discuss these on the grounds and limitations of our approaches. Our work represents a further step to characterize the mutational landscape of NQO1 in the human genome and may help to improve high-throughput in silico tools for genotype-phenotype correlations in this multifunctional protein associated with disease. | es_ES |
dc.description.sponsorship | ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency | es_ES |
dc.description.sponsorship | Junta de Andalucia RTI 2018-096246-B-I00 | es_ES |
dc.description.sponsorship | ERDF/Counseling of Economic transformation, Industry, Knowledge and Universities P18-RT-2413 | es_ES |
dc.description.sponsorship | Comunidad Valenciana B-BIO-84-UGR20 | es_ES |
dc.description.sponsorship | Novo Nordisk Foundation | es_ES |
dc.description.sponsorship | Novocure Limited CIAICO/2021/135 NNF18OC0033950 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Frontiers | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Protein function | es_ES |
dc.subject | Protein stability | es_ES |
dc.subject | Genotype-phenotype correlations | es_ES |
dc.subject | Computational prediction | es_ES |
dc.subject | Sequence conservation | es_ES |
dc.title | Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.3389/fmolb.2022.1063620 | |
dc.type.hasVersion | VoR | es_ES |