Afficher la notice abrégée

dc.contributor.authorRueda Etxebarria, Jon 
dc.date.accessioned2023-01-09T08:11:14Z
dc.date.available2023-01-09T08:11:14Z
dc.date.issued2022-12-21
dc.identifier.citationRueda, J., Delgado Rodríguez, J. Parra Jounou, I., Hortal, J., & Rodríguez-Arias, D. (2022). “Just” accuracy? Procedural fairness demands explainability in AI-based medical resource allocations. AI & Society. [https://doi.org/10.1007/s00146-022-01614-9]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78748
dc.descriptionFunding for open access publishing: Universidad de Granada/ CBUA. This research is funded by the project “Detección y eliminación de sesgos en algoritmos de triaje y localización para la COVID-19” of the call Ayudas Fundación BBVA a Equipos de Investigación Científica SARS-CoV-2 y COVID-19, en el área de Humanidades. JR also thanks a La Caixa Foundation INPhINIT Retaining Fellowship (LCF/BQ/ DR20/11790005). DR-A thanks the funding of the Spanish Research Agency (codes FFI2017-88913-P and PID2020-118729RB-I00). IPJ also thanks the funding of the Spanish Research Agency (code PID2019-105422GB-I00).es_ES
dc.description.abstractThe increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because it helps to maximize patients’ benefits and optimizes limited resources. However, we claim that the opaqueness of the algorithmic black box and its absence of explainability threatens core commitments of procedural fairness such as accountability, avoidance of bias, and transparency. To illustrate this, we discuss liver transplantation as a case of critical medical resources in which the lack of explainability in AI-based allocation algorithms is procedurally unfair. Finally, we provide a number of ethical recommendations for when considering the use of unexplainable algorithms in the distribution of health-related resources.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Granada/ CBUAes_ES
dc.description.sponsorshipProject “Detección y eliminación de sesgos en algoritmos de triaje y localización para la COVID-19” of the call Ayudas Fundación BBVA a Equipos de Investigación Científica SARS-CoV-2 y COVID-19, en el área de Humanidadeses_ES
dc.description.sponsorshipLa Caixa Foundation INPhINIT Retaining Fellowship (LCF/BQ/ DR20/11790005)es_ES
dc.description.sponsorshipSpanish Research Agency (codes FFI2017-88913-P and PID2020-118729RB-I00)es_ES
dc.description.sponsorshipSpanish Research Agency (code PID2019-105422GB-I00)es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectArtificial intelligencees_ES
dc.subjectDistributive justicees_ES
dc.subjectExplainabilityes_ES
dc.subjectMedical AIes_ES
dc.subjectProcedural fairnesses_ES
dc.title“Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocationses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1007/s00146-022-01614-9
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-CompartirIgual 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-CompartirIgual 4.0 Internacional