Mostrar el registro sencillo del ítem

dc.contributor.authorZhang, Zihe
dc.contributor.authorGonzález Cano, Rafael 
dc.date.accessioned2022-12-12T12:32:48Z
dc.date.available2022-12-12T12:32:48Z
dc.date.issued2022-12
dc.identifier.citationZhang, Zihe... [et al.]. Automated preclinical detection of mechanical pain hypersensitivity and analgesia. PAIN: December 2022 - Volume 163 - Issue 12 - p 2326-2336 doi: [10.1097/j.pain.0000000000002680]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78398
dc.description.abstractThe lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for highthroughput preclinical analgesic efficacy assessment.es_ES
dc.description.sponsorshipUnited States Department of Defensees_ES
dc.description.sponsorshipDefense Advanced Research Projects Agency (DARPA) HR0011-19-2-0022es_ES
dc.description.sponsorshipUnited States Department of Health & Human Serviceses_ES
dc.description.sponsorshipNational Institutes of Health (NIH) - USAes_ES
dc.description.sponsorshipNIH National Institute of Neurological Disorders & Stroke (NINDS) F31 NS084716-02 R35 NS105076 R01 NS089521 F31 NS108450 R01 NA114202es_ES
dc.description.sponsorshipBertarelli Foundationes_ES
dc.description.sponsorshipSimons Collaboration on the Global Braines_ES
dc.description.sponsorshipNIH BRAIN Initiative U19 NS113201 U24 NS109520 R01AT011447es_ES
dc.description.sponsorshipBoston Children's Hospital Technology Development Fundes_ES
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 229356/2013-3es_ES
dc.language.isoenges_ES
dc.publisherLippincot Williams & Wilkinses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPreclinical pain modelses_ES
dc.subjectMachine learninges_ES
dc.subjectMachine visiones_ES
dc.subjectAutomated pain detectiones_ES
dc.titleAutomated preclinical detection of mechanical pain hypersensitivity and analgesiaes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1097/j.pain.0000000000002680
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional