Mostrar el registro sencillo del ítem

dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.contributor.authorJiménez Mesa, Carmen 
dc.contributor.authorSegovia Román, Fermín 
dc.contributor.authorRamírez, J.
dc.contributor.authorSIPBA group
dc.date.accessioned2022-12-07T12:20:33Z
dc.date.available2022-12-07T12:20:33Z
dc.date.issued2021-08-04
dc.identifier.citationJ. M. Górriz... [et al.]. "A Connection Between Pattern Classification by Machine Learning and Statistical Inference With the General Linear Model," in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 11, pp. 5332-5343, Nov. 2022, doi: [10.1109/JBHI.2021.3101662]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78336
dc.description.abstractA connection between the general linear model (GLM) with frequentist statistical testing and machine learning (MLE) inference is derived and illustrated. Initially, the estimation of GLM parameters is expressed as a Linear Regression Model (LRM) of an indicator matrix; that is, in terms of the inverse problem of regressing the observations. Both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains, and are linked by a normalization value in the least-squares solution. Subsequently, we derive a more refined predictive statistical test: the linear Support Vector Machine (SVM), that maximizes the class margin of separation within a permutation analysis. This MLE-based inference employs a residual score and associated upper bound to compute a better estimation of the actual (real) error. Experimental results demonstrate how parameter estimations derived from each model result in different classification performance in the equivalent inverse problem. Moreover, using real data, the MLE-based inference including model-free estimators demonstrates an efficient trade-off between type I errors and statistical power.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (Espana)/FEDER RTI2018-098913B100es_ES
dc.description.sponsorshipJunta de Andaluciaes_ES
dc.description.sponsorshipEuropean Commission CV20-45250 A-TIC-080-UGR18 P20-00525es_ES
dc.description.sponsorshipNational Health and Medical Research Council (NHMRC) of Australia 18/04902es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGeneral linear modeles_ES
dc.subjectLinear Regression Modeles_ES
dc.subjectPattern classificationes_ES
dc.subjectUpper boundses_ES
dc.subjectPermutation testses_ES
dc.subjectCross-validationes_ES
dc.titleA Connection Between Pattern Classification by Machine Learning and Statistical Inference With the General Linear Modeles_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JBHI.2021.3101662
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional