On multivariate orthogonal polynomials and elementary symmetric functions
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Fecha
2022-11-01Referencia bibliográfica
Bracciali, C.F., Piñar, M.A. On multivariate orthogonal polynomials and elementary symmetric functions. Numer Algor (2022). [https://doi.org/10.1007/s11075-022-01434-4]
Patrocinador
Funding for open access charge: Universidad de Granada / CBUA; Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), in the scope of the CAPES-PrInt Program, process number 88887.310463/2018-00, International Cooperation Project number 88887.468471/2019-00; Grant PGC2018-094932-B-I00 from FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación; IMAG-María de Maeztu grant CEX2020-001105-M/ AEI/10.13039/501100011033Resumen
We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables
Bγ(x)=∏i=1dω(xi)∏i<j|xi−xj|2γ+1,x∈(a,b)d,
for γ>−1
, where ω(t) is an univariate weight function in t∈(a,b) and x=(x1,x2,…,xd) with xi∈(a,b). Applying the change of variables xi, i=1,2,…,d, into ur, r=1,2,…,d, where ur is the r-th elementary symmetric function, we obtain the domain region in terms of the discriminant of the polynomials having xi, i=1,2,…,d, as its zeros and in terms of the corresponding Sturm sequence. Choosing the univariate weight function as the Hermite, Laguerre, and Jacobi weight functions, we obtain the representation in terms of the variables ur for the partial differential operators such that the respective Hermite, Laguerre, and Jacobi generalized multivariate orthogonal polynomials are the eigenfunctions. Finally, we present explicitly the partial differential operators for Hermite, Laguerre, and Jacobi generalized polynomials, for d=2 and d=3 variables.