Mostrar el registro sencillo del ítem

dc.contributor.authorOrtegon-Sarmiento, Tatiana
dc.contributor.authorPaderewski Rodríguez, Patricia 
dc.contributor.authorGutiérrez Vela, Francisco Luis 
dc.date.accessioned2022-11-23T11:15:22Z
dc.date.available2022-11-23T11:15:22Z
dc.date.issued2022-10-17
dc.identifier.citationOrtegon-Sarmiento, T.; Kelouwani, S.; Alam, M.Z.; Uribe-Quevedo, A.; Amamou, A.; Paderewski-Rodriguez, P.; Gutierrez-Vela, F. Analyzing Performance Effects of Neural Networks Applied to Lane Recognition under Various Environmental Driving Conditions. World Electr. Veh. J. 2022, 13, 191. [https://doi.org/10.3390/wevj13100191]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78092
dc.descriptionAcknowledgments: Authors would like to thank the Université du Québec à Trois-Rivières and the Institut de recherche sur l’hydrogène for their collaboration and assistance.es_ES
dc.description.abstractLane detection is an essential module for the safe navigation of autonomous vehicles (AVs). Estimating the vehicle’s position and trajectory on the road is critical; however, several environmental variables can affect this task. State-of-the-art lane detection methods utilize convolutional neural networks (CNNs) as feature extractors to obtain relevant features through training using multiple kernel layers. It makes them vulnerable to any statistical change in the input data or noise affecting the spatial characteristics. In this paper, we compare six different CNN architectures to analyze the effect of various adverse conditions, including harsh weather, illumination variations, and shadows/occlusions, on lane detection. Among all the aforementioned adverse conditions, harsh weather in general and snowy night conditions particularly affect the performance by a large margin. The average detection accuracy of the networks decreased by 75.2%, and the root mean square error (RMSE) increased by 301.1%. Overall, the results show a noticeable drop in the networks’ accuracy for all adverse conditions because the features’ stochastic distributions change for each state.es_ES
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaes_ES
dc.description.sponsorshipCanada Research Chairses_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAutonomous vehicleses_ES
dc.subjectBenchmarking es_ES
dc.subjectLane detectiones_ES
dc.subjectPre-trained networkses_ES
dc.subjectTransfer learninges_ES
dc.titleAnalyzing Performance Effects of Neural Networks Applied to Lane Recognition under Various Environmental Driving Conditionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/wevj13100191
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional