Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Barroso, Nuria
dc.contributor.authorJiménez López, Daniel
dc.contributor.authorRuiz Millán, José Antonio
dc.contributor.authorMartínez Cámara, Eugenio 
dc.contributor.authorLuzón García, María Victoria 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2022-11-16T08:59:13Z
dc.date.available2022-11-16T08:59:13Z
dc.date.issued2020-10-06
dc.identifier.citationPublished version: Nuria Rodríguez-Barroso... [et al.]. Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy, Information Fusion, Volume 64, 2020, Pages 270-292, ISSN 1566-2535, [https://doi.org/10.1016/j.inffus.2020.07.009]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77990
dc.description.abstractThe high demand of artificial intelligence services at the edges that also preserve data privacy has pushed the research on novel machine learning paradigms that fit these requirements. Federated learning has the ambition to protect data privacy through distributed learning methods that keep the data in its storage silos. Likewise, differential privacy attains to improve the protection of data privacy by measuring the privacy loss in the communication among the elements of federated learning. The prospective matching of federated learning and differential privacy to the challenges of data privacy protection has caused the release of several software tools that support their functionalities, but they lack a unified vision of these techniques, and a methodological workflow that supports their usage. Hence, we present the Sherpa.ai Federated Learning framework that is built upon a holistic view of federated learning and differential privacy. It results from both the study of how to adapt the machine learning paradigm to federated learning, and the definition of methodological guidelines for developing artificial intelligence services based on federated learning and differential privacy. We show how to follow the methodological guidelines with the Sherpa.ai Federated Learning framework by means of a classification and a regression use cases.es_ES
dc.description.sponsorshipSHERPA Europe S.L. OTRI-4137es_ES
dc.description.sponsorshipSpanish Governmentes_ES
dc.description.sponsorshipEuropean Commission TIN2017-89517-Pes_ES
dc.description.sponsorshipSpanish Government fellowship programmes Formacion de Profesorado Universitario FPU18/04475 Juan de la Cierva Incorporacion IJC2018-036092-Ies_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFederated learninges_ES
dc.subjectDifferential privacyes_ES
dc.subjectSoftware frameworkes_ES
dc.subjectSherpa.ai Federated Learning frameworkes_ES
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleFederated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional