Afficher la notice abrégée

dc.contributor.authorMa, Xiaoyan
dc.contributor.authorNavarro, Carmen
dc.date.accessioned2022-11-15T08:17:23Z
dc.date.available2022-11-15T08:17:23Z
dc.date.issued2015-04-20
dc.identifier.citationMa, X... [et al.]. Reliable scaling of position weight matrices for binding strength comparisons between transcription factors. BMC Bioinformatics 16, 265 (2015). [https://doi.org/10.1186/s12859-015-0666-1]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77971
dc.description.abstractBackground: Scoring DNA sequences against PositionWeight Matrices (PWMs) is a widely adopted method to identify putative transcription factor binding sites. While common bioinformatics tools produce scores that can reflect the binding strength between a specific transcription factor and the DNA, these scores are not directly comparable between different transcription factors. Other methods, including p-value associated approaches (Touzet H, Varré J-S. Efficient and accurate p-value computation for position weight matrices. Algorithms Mol Biol. 2007;2(1510.1186):1748–7188), provide more rigorous ways to identify potential binding sites, but their results are difficult to interpret in terms of binding energy, which is essential for the modeling of transcription factor binding dynamics and enhancer activities. Results: Here, we provide two different ways to find the scaling parameter λ that allows us to infer binding energy from a PWM score. The first approach uses a PWM and background genomic sequence as input to estimate λ for a specific transcription factor, which we applied to show that λ distributions for different transcription factor families correspond with their DNA binding properties. Our second method can reliably convert λ between different PWMs of the same transcription factor, which allows us to directly compare PWMs that were generated by different approaches. Conclusion: These two approaches provide computationally efficient ways to scale PWM scores and estimate the strength of transcription factor binding sites in quantitative studies of binding dynamics. Their results are consistent with each other and previous reports in most of cases.es_ES
dc.description.sponsorshipChinese Scholarship Council (CSC) Scholarshipes_ES
dc.description.sponsorshipMarshall Scholarshipes_ES
dc.description.sponsorshipDGICT, Madrid TIN2013-41990-Res_ES
dc.description.sponsorshipRoyal Society of Londones_ES
dc.language.isoenges_ES
dc.publisherBMCes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectTranscription factores_ES
dc.subjectPosition weight matrix (Position-Specific Scoring Matrix)es_ES
dc.subjectBinding site strengthes_ES
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleReliable scaling of position weight matrices for binding strength comparisons between transcription factorses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1186/s12859-015-0666-1
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional