Mostrar el registro sencillo del ítem

dc.contributor.authorCano Gutiérrez, Carlos 
dc.contributor.authorBlanco Morón, Armando 
dc.date.accessioned2022-11-11T09:32:54Z
dc.date.available2022-11-11T09:32:54Z
dc.date.issued2009-02-14
dc.identifier.citationC. Cano... [et al.]. Collaborative text-annotation resource for disease-centered relation extraction from biomedical text, Journal of Biomedical Informatics, Volume 42, Issue 5, 2009, Pages 967-977, ISSN 1532-0464, [https://doi.org/10.1016/j.jbi.2009.02.001]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77914
dc.description.abstractAgglomerating results from studies of individual biological components has shown the potential to produce biomedical discovery and the promise of therapeutic development. Such knowledge integration could be tremendously facilitated by automated text mining for relation extraction in the biomedical literature. Relation extraction systems cannot be developed without substantial datasets annotated with ground truth for benchmarking and training. The creation of such datasets is hampered by the absence of a resource for launching a distributed annotation effort, as well as by the lack of a standardized annotation schema. We have developed an annotation schema and an annotation tool which can be widely adopted so that the resulting annotated corpora from a multitude of disease studies could be assembled into a unified benchmark dataset. The contribution of this paper is threefold. First, we provide an overview of available benchmark corpora and derive a simple annotation schema for specific binary relation extraction problems such as protein–protein and gene–disease relation extraction. Second, we present BioNotate: an open source annotation resource for the distributed creation of a large corpus. Third, we present and make available the results of a pilot annotation effort of the autism disease networkes_ES
dc.description.sponsorshipP08-TIC-4299 of J. A., Sevilla and TIN2006-13177 of DGICT, Madrides_ES
dc.description.sponsorshipMilton foundationes_ES
dc.description.sponsorshipNational Science Foundation under Grant No. 0543480es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInformation extractiones_ES
dc.subjectInformation retrieval es_ES
dc.subjectCollaborative annotationes_ES
dc.subjectCorpus annotationes_ES
dc.subjectText mininges_ES
dc.subjectRelation extractiones_ES
dc.subjectProtein–protein interactiones_ES
dc.subjectGene–disease associationes_ES
dc.subjectAutism es_ES
dc.subjectDisease evidence networkes_ES
dc.subjectClinical informaticses_ES
dc.titleCollaborative text-annotation resource for disease-centered relation extraction from biomedical textes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jbi.2009.02.001
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional