Afficher la notice abrégée

dc.contributor.authorGuillén, Alberto
dc.contributor.authorSorjamaa, Antti
dc.contributor.authorLendasse, Amaury
dc.date.accessioned2022-11-11T09:06:36Z
dc.date.available2022-11-11T09:06:36Z
dc.date.issued2009
dc.identifier.citationGuillén, A... [et al.] (2009). Mutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problems. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/978-3-642-04274-4_1]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77910
dc.description.abstractPure feature selection, where variables are chosen or not to be in the training data set, still remains as an unsolved problem, especially when the dimensionality is high. Recently, the Forward-Backward Search algorithm using the Delta Test to evaluate a possible solution was presented, showing a good performance. However, due to the locality of the search procedure, the initial starting point of the search becomes crucial in order to obtain good results. This paper presents new heuristics to find a more adequate starting point that could lead to a better solution. The heuristic is based on the sorting of the variables using the Mutual Information criterion, and then performing parallel local searches. These local searches provide an initial starting point for the actual parallel Forward-Backward algorithm.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleMutual Information Based Initialization of Forward-Backward Search for Feature Selection in Regression Problemses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional