Afficher la notice abrégée

dc.contributor.authorBerlanga, F. J.
dc.contributor.authorGacto Colorado, María José 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2022-11-10T12:25:00Z
dc.date.available2022-11-10T12:25:00Z
dc.date.issued2006
dc.identifier.citationPublished version: Berlanga, F.J... [et al.] (2006). A Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/11785231_20]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77891
dc.description.abstractIn the design of an interpretable fuzzy rule-based classification system (FRBCS) the precision as much as the simplicity of the extracted knowledge must be considered as objectives. In any inductive learning algorithm, when we deal with problems with a large number of features, the exponential growth of the fuzzy rule search space makes the learning process more difficult. Moreover it leads to an FRBCS with a rule base with a high cardinality. In this paper, we propose a genetic-programming-based method for the learning of an FRBCS, where disjunctive normal form (DNF) rules compete and cooperate among themselves in order to obtain an understandable and compact set of fuzzy rules, which presents a good classification performance with high dimensionality problems. This proposal uses a token competition mechanism to maintain the diversity of the population. The good results obtained with several classification problems support our proposal.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Technology TIN-2005-08386-C05-03 and TIN-2005-08386-C05-01es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleA Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systemses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional