Mostrar el registro sencillo del ítem

dc.contributor.authorGuillén Perales, Alberto 
dc.contributor.authorRojas Ruiz, Ignacio 
dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorPomares Cintas, Héctor Emilio 
dc.contributor.authorHerrera Maldonado, Luis Javier 
dc.contributor.authorFernández Baldomero, Francisco J. 
dc.date.accessioned2022-11-10T12:20:20Z
dc.date.available2022-11-10T12:20:20Z
dc.date.issued2006
dc.identifier.citationPublished version: Guillén, A... [et al.] (2006). Multiobjective RBFNNs Designer for Function Approximation: An Application for Mineral Reduction. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/11881070_71]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77890
dc.description.abstractRadial Basis Function Neural Networks (RBFNNs) are well known because, among other applications, they present a good perfor- mance when approximating functions. The function approximation prob- lem arises in the construction of a control system to optimize the process of the mineral reduction. In order to regulate the temperature of the ovens and other parameters, it is necessary a module to predict the ¯nal concentration of mineral that will be obtained from the source materials. This module can be formed by an RBFNN that predicts the output and by the algorithm that designs the RBFNN dynamically as more data is obtained. The design of RBFNNs is a very complex task where many parameters have to be determined, therefore, a genetic algorithm that determines all of them has been developed. This algorithm provides sat- isfactory results since the networks it generates are able to predict quite precisely the ¯nal concentration of mineral.es_ES
dc.description.sponsorshipSpanish CICYT Project TIN2004-01419es_ES
dc.description.sponsorshipEuropean Commission's Research Infrastructures RII3-CT-2003-506079 (HPC-Europa)es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleMultiobjective RBFNNs Designer for Function Approximation: An Application for Mineral Reductiones_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional