Show simple item record

dc.contributor.authorTorres Agudo, Joaquín 
dc.contributor.authorCortes, J. M.
dc.contributor.authorMarro Borau, Joaquín 
dc.date.accessioned2022-11-10T11:53:11Z
dc.date.available2022-11-10T11:53:11Z
dc.date.issued2006-04-16
dc.identifier.citationPublished version: Torres, J.J., Cortés, J.M., Marro, J. (2005). Instability of Attractors in Auto-associative Networks with Bio-inspired Fast Synaptic Noise. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. [https://doi.org/10.1007/11494669_21]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77887
dc.description.abstractWe studied auto–associative networks in which synapses are noisy on a time scale much shorter that the one for the neuron dynamics. In our model a presynaptic noise causes postsynaptic depression as recently ob- served in neurobiological systems. This results in a nonequilibrium condi- tion in which the network sensitivity to an external stimulus is enhanced. In particular, the fixed points are qualitatively modified, and the system may easily scape from the attractors. As a result, in addition to pattern recognition, the model is useful for class identification and categorization.es_ES
dc.description.sponsorshipMCyT and FEDER (project No. BFM2001- 2841 and Ram´on y Cajal contract)es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectInteligencia artificial es_ES
dc.subjectArtificial intelligence es_ES
dc.titleInstability of attractors in auto–associative networks with bio–inspired fast synaptic noisees_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional