Mostrar el registro sencillo del ítem
On Gegenbauer Point Processes on the Unit Interval
dc.contributor.author | Beltrán, Carlos | |
dc.contributor.author | Delgado Amaro, Antonia María | |
dc.contributor.author | Fernández Rodríguez, Lidia | |
dc.contributor.author | Sánchez Lara, Joaquín Francisco | |
dc.date.accessioned | 2022-11-04T10:59:01Z | |
dc.date.available | 2022-11-04T10:59:01Z | |
dc.date.issued | 2022-10-04 | |
dc.identifier.citation | Beltrán, C... [et al.]. On Gegenbauer Point Processes on the Unit Interval. Potential Anal (2022). [https://doi.org/10.1007/s11118-022-10045-6] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/77749 | |
dc.description.abstract | In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term. | es_ES |
dc.description.sponsorship | CRUE-CSIC agreement | es_ES |
dc.description.sponsorship | Springer Nature | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Point distributions | es_ES |
dc.subject | Gegenbauer polynomials | es_ES |
dc.subject | Determinantal point processes | es_ES |
dc.subject | Fekete points | es_ES |
dc.title | On Gegenbauer Point Processes on the Unit Interval | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s11118-022-10045-6 | |
dc.type.hasVersion | VoR | es_ES |