Show simple item record

dc.contributor.authorBeltrán, Carlos
dc.contributor.authorDelgado Amaro, Antonia María 
dc.contributor.authorFernández Rodríguez, Lidia 
dc.contributor.authorSánchez Lara, Joaquín Francisco
dc.identifier.citationBeltrán, C... [et al.]. On Gegenbauer Point Processes on the Unit Interval. Potential Anal (2022). []es_ES
dc.description.abstractIn this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen from different Gegenbauer Determinantal Point Processes. We check that all the different families of Gegenbauer polynomials yield the same asymptotic result to third order, we compute exactly the value for Chebyshev polynomials and we give a closed expression for the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match the value of the minimum beyond the third asymptotic term.es_ES
dc.description.sponsorshipCRUE-CSIC agreementes_ES
dc.description.sponsorshipSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.subjectPoint distributionses_ES
dc.subjectGegenbauer polynomialses_ES
dc.subjectDeterminantal point processeses_ES
dc.subjectFekete pointses_ES
dc.titleOn Gegenbauer Point Processes on the Unit Intervales_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional