Afficher la notice abrégée

dc.contributor.authorAbed Abud, A.
dc.contributor.authorGarcía Gámez, Diego 
dc.contributor.authorNicolás Arnaldos, Francisco Javier 
dc.contributor.authorZamorano García, Bruno 
dc.contributor.authorDune Collaboration
dc.date.accessioned2022-11-04T10:32:30Z
dc.date.available2022-11-04T10:32:30Z
dc.date.issued2022-10-12
dc.identifier.citationAbed Abud, A... [et al.]. Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network. Eur. Phys. J. C 82, 903 (2022). [https://doi.org/10.1140/epjc/s10052-022-10791-2]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77744
dc.description.abstractLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.es_ES
dc.description.sponsorshipFermi Research Alliance, LLC (FRA) DE-AC02-07CH11359es_ES
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio De Janeiro (FAPERJ) Fundacao de Amparo a Pesquisa do Estado do Goias (FAPEG) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)es_ES
dc.description.sponsorshipCanada Foundation for Innovation IPP, Canada Natural Sciences and Engineering Research Council of Canada (NSERC)es_ES
dc.description.sponsorshipCERNes_ES
dc.description.sponsorshipMinistry of Education, Youth & Sports - Czech Republic Czech Republic Governmentes_ES
dc.description.sponsorshipERDF, European Union H2020-EU, European Union MSCA, European Uniones_ES
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS) French Atomic Energy Commissiones_ES
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN)es_ES
dc.description.sponsorshipPortuguese Foundation for Science and Technology European Commissiones_ES
dc.description.sponsorshipNational Research Foundation of Koreaes_ES
dc.description.sponsorshipCAM, Spain La Caixa Foundation Junta de Andalucia-FEDER, Spain Ministry of Science and Innovation, Spain (MICINN) Spanish Government Xunta de Galiciaes_ES
dc.description.sponsorshipSERI, Switzerland Swiss National Science Foundation (SNSF)es_ES
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)es_ES
dc.description.sponsorshipRoyal Society of London UK Research & Innovation (UKRI)es_ES
dc.description.sponsorshipScience & Technology Facilities Council (STFC) United States Department of Energy (DOE) National Science Foundation (NSF) National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility DE-AC02-05CH11231es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSeparation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural networkes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1140/epjc/s10052-022-10791-2
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional