Mostrar el registro sencillo del ítem

dc.contributor.authorArco Martín, Juan Eloy 
dc.contributor.authorRamírez Pérez De Inestrosa, Javier 
dc.contributor.authorMartínez Murcia, Francisco Jesús 
dc.contributor.authorGorriz Sáez, Juan Manuel 
dc.date.accessioned2022-10-31T07:44:50Z
dc.date.available2022-10-31T07:44:50Z
dc.date.issued2022-08-13
dc.identifier.citationJuan E. Arco... [et al.]. Uncertainty-driven ensembles of multi-scale deep architectures for image classification, Information Fusion, Volume 89, 2023, Pages 53-65, ISSN 1566-2535, [https://doi.org/10.1016/j.inffus.2022.08.010]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77640
dc.description.abstractThe use of automatic systems for medical image classification has revolutionized the diagnosis of a high number of diseases. These alternatives, which are usually based on artificial intelligence (AI), provide a helpful tool for clinicians, eliminating the inter and intra-observer variability that the diagnostic process entails. Convolutional Neural Network (CNNs) have proved to be an excellent option for this purpose, demonstrating a large performance in a wide range of contexts. However, it is also extremely important to quantify the reliability of the model’s predictions in order to guarantee the confidence in the classification. In this work, we propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach in order to maximize performance while providing the uncertainty of each classification decision. This tool combines the information extracted from different architectures by weighting their results according to the uncertainty of their predictions. Performance is evaluated in a wide range of real scenarios: in the first one, the aim is to differentiate between different pulmonary pathologies: controls vs bacterial pneumonia vs viral pneumonia. A two-level decision tree is employed to divide the 3-class classification into two binary classifications, yielding an accuracy of 98.19%. In the second context, performance is assessed for the diagnosis of Parkinson’s disease, leading to an accuracy of 95.31%. The reduced preprocessing needed for obtaining this high performance, in addition to the information provided about the reliability of the predictions evidence the applicability of the system to be used as an aid for clinicians.es_ES
dc.description.sponsorshipMCINes_ES
dc.description.sponsorshipFEDER "Una manera de hacer Europa" PGC2018-098813-B-C32 A-TIC-080-UGR18es_ES
dc.description.sponsorshipJunta de Andaluciaes_ES
dc.description.sponsorshipEuropean Commission B-TIC-586-UGR20 P20-00525es_ES
dc.description.sponsorshipMinisterio de Universidadeses_ES
dc.description.sponsorshipUniversidad de Granada/CBUA RTI2018-098913-B100 CV20-45250es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBayesian Deep Learninges_ES
dc.subjectUncertainty es_ES
dc.subjectEnsemble classificationes_ES
dc.subjectPneumonia es_ES
dc.subjectParkinson’ses_ES
dc.titleUncertainty-driven ensembles of multi-scale deep architectures for image classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2022.08.010
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional