Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz de Miras, Juan 
dc.date.accessioned2022-10-18T11:43:41Z
dc.date.available2022-10-18T11:43:41Z
dc.date.issued2022-09-24
dc.identifier.citationJ. Ruiz de Miras... [et al.]. Schizophrenia classification using machine learning on resting state EEG signal, Biomedical Signal Processing and Control, Volume 79, Part 2, 2023, 104233, ISSN 1746-8094, [https://doi.org/10.1016/j.bspc.2022.104233]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77381
dc.description.abstractSchizophrenia is a severe mental disorder associated with a wide spectrum of cognitive and neurophysiological dysfunctions. Early diagnosis is still difficult and based on the manifestation of the disorder. In this study, we have evaluated whether machine learning techniques can help in the diagnosis of schizophrenia, and proposed a processing pipeline in order to obtain machine learning classifiers of schizophrenia based on resting state EEG data. We have computed well-known linear and non-linear measures on sliding windows of the EEG data, selected those measures which better differentiate between patients and healthy controls, and combined them through principal component analysis. These components were finally used as features in five standard machine learning algorithms: k-nearest neighbours (kNN), logistic regression (LR), decision trees (DT), random forest (RF) and support vector machines (SVM). Complexity measures showed a high level of ability in differentiating schizophrenia patients from healthy controls. These differences between groups were mainly located in a delimited zone of the right brain hemisphere, corresponding to the opercular area and the temporal pole. Based on the area under the curve parameter in receiver operating characteristic curve analysis, we obtained high classification power in almost all of the machine learning algorithms tested: SVM (0.89), RF (0.87), LR (0.86), kNN (0.86) and DT (0.68). Our results suggest that the proposed processing pipeline on resting state EEG data is able to easily compute and select a set of features which allow standard machine learning algorithms to perform very efficiently in differentiating schizophrenia patients from healthy subjects.es_ES
dc.description.sponsorshipSpanish Government European Commission PID2019-105145RB-I00 MCIN/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSchizophrenia es_ES
dc.subjectEEGes_ES
dc.subjectResting statees_ES
dc.subjectMachine-learning classificationes_ES
dc.titleSchizophrenia classification using machine learning on resting state EEG signales_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.bspc.2022.104233
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional