Mostrar el registro sencillo del ítem

dc.contributor.authorAlbouy, Alain
dc.contributor.authorUreña Alcázar, Antonio Jesús 
dc.date.accessioned2022-09-28T11:35:54Z
dc.date.available2022-09-28T11:35:54Z
dc.date.issued2022-01-23
dc.identifier.citationPublished version: Albouy, A. & Ureña, A. J. An antimaximum principle for periodic solutions of a forced oscillator. Communications in Contemporary Mathematics (2022) 2250041. [https://doi.org/10.1142/S0219199722500419]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77053
dc.description.abstractConsider the equation of the linear oscillator u '' + u = h(theta), where the forcing term h : R -> R is 2 pi-periodic and positive. We show that the existence of a periodic solution implies the existence of a positive solution. To this aim we establish connections between this problem and some separation questions of convex analysis.es_ES
dc.description.sponsorshipParis Observatory grantes_ES
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAntimaximum principlees_ES
dc.subjectForced linear oscillatores_ES
dc.subjectPositive solutionses_ES
dc.subjectSeparation of convex setses_ES
dc.titleAn antimaximum principle for periodic solutions of a forced oscillatores_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional