Mostrar el registro sencillo del ítem
An antimaximum principle for periodic solutions of a forced oscillator
| dc.contributor.author | Albouy, Alain | |
| dc.contributor.author | Ureña Alcázar, Antonio Jesús | |
| dc.date.accessioned | 2022-09-28T11:35:54Z | |
| dc.date.available | 2022-09-28T11:35:54Z | |
| dc.date.issued | 2022-01-23 | |
| dc.identifier.citation | Published version: Albouy, A. & Ureña, A. J. An antimaximum principle for periodic solutions of a forced oscillator. Communications in Contemporary Mathematics (2022) 2250041. [https://doi.org/10.1142/S0219199722500419] | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/77053 | |
| dc.description.abstract | Consider the equation of the linear oscillator u '' + u = h(theta), where the forcing term h : R -> R is 2 pi-periodic and positive. We show that the existence of a periodic solution implies the existence of a positive solution. To this aim we establish connections between this problem and some separation questions of convex analysis. | es_ES |
| dc.description.sponsorship | Paris Observatory grant | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | World Scientific | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Antimaximum principle | es_ES |
| dc.subject | Forced linear oscillator | es_ES |
| dc.subject | Positive solutions | es_ES |
| dc.subject | Separation of convex sets | es_ES |
| dc.title | An antimaximum principle for periodic solutions of a forced oscillator | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.type.hasVersion | SMUR | es_ES |
