Mostrar el registro sencillo del ítem

dc.contributor.authorGarrido Galera, Pedro Luis 
dc.date.accessioned2022-09-28T11:01:17Z
dc.date.available2022-09-28T11:01:17Z
dc.date.issued2022-08-08
dc.identifier.citationP. L. Garrido. Correlations in nonequilibrium diffusive systems. Phys. Rev. E 106, 024107 [https://doi.org/10.1103/PhysRevE.106.024107]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/77048
dc.descriptionACKNOWLEDGMENTS This work is part of the Project of I+D+i Ref. No. PID2020-113681GB-I00, financed by MICIN/AEI/10.13039/501100011033 and FEDER “A way to make Europe.”es_ES
dc.description.abstractWe study the behavior of stationary nonequilibrium two-body correlation functions for diffusive systems with equilibrium reference states (DSe). We describe a DSe at the mesoscopic level by M locally conserved continuum fields that evolve through coupled Langevin equations with white noises. The dynamic is designed such that the system may reach equilibrium states for a set of boundary conditions. In this form, we make the system driven to a nonequilibrium stationary state by changing the equilibrium boundary conditions. We decompose the correlations in a known local equilibrium part and another one that contains the nonequilibrium behavior and that we call correlation's excess ¯¯¯C(x,z). We formally derive the differential equations for ¯¯¯C. To solve them order by order, we define a perturbative expansion around the equilibrium state. We show that the ¯¯¯C's first-order expansion, ¯¯¯C(1), is always zero for the unique field case, M=1. Moreover, ¯¯¯C(1) is always long range or zero when M>1. We obtain the surprising result that their associated fluctuations, the space integrals of ¯¯¯C(1), are always zero. Therefore, fluctuations are dominated by local equilibrium up to second order in the perturbative expansion around the equilibrium. We derive the behaviors of ¯¯¯C(1) in real space for dimensions d=1 and 2 explicitly. Finally, we derive the two first perturbative orders of the correlation's excess for a generic M=2 case and a hydrodynamic model.es_ES
dc.description.sponsorshipI+D+i MICIN/AEI/10.13039/501100011033, PID2020-113681GB-I00es_ES
dc.description.sponsorshipFederación Española de Enfermedades Rarases_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleCorrelations in nonequilibrium diffusive systemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1103/PhysRevE.106.024107
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional