Afficher la notice abrégée

dc.contributor.authorAndrés, Eva
dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorNavarro Garulo, Gabriel 
dc.date.accessioned2022-09-26T11:08:06Z
dc.date.available2022-09-26T11:08:06Z
dc.date.issued2022-08-19
dc.identifier.citationAndrés, E.; Cuéllar, M.P.; Navarro, G. On the Use of Quantum Reinforcement Learning in Energy-Efficiency Scenarios. Energies 2022, 15, 6034. [https://doi.org/10.3390/en15166034]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/76972
dc.description.abstractIn the last few years, deep reinforcement learning has been proposed as a method to perform online learning in energy-efficiency scenarios such as HVAC control, electric car energy management, or building energy management, just to mention a few. On the other hand, quantum machine learning was born during the last decade to extend classic machine learning to a quantum level. In this work, we propose to study the benefits and limitations of quantum reinforcement learning to solve energyefficiency scenarios. As a testbed, we use existing energy-efficiency-based reinforcement learning simulators and compare classic algorithms with the quantum proposal. Results in HVAC control, electric vehicle fuel consumption, and profit optimization of electrical charging stations applications suggest that quantum neural networks are able to solve problems in reinforcement learning scenarios with better accuracy than their classical counterpart, obtaining a better cumulative reward with fewer parameters to be learned.es_ES
dc.description.sponsorshipproject QUANERGY TED2021-129360B-I00es_ES
dc.description.sponsorshipEcological and Digital Transition R&D projects call 2022, Government of Spaines_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectQuantum neural networkses_ES
dc.subjectVariational quantum circuitses_ES
dc.subjectQuantum reinforcement learninges_ES
dc.subjectEnergy efficiencyes_ES
dc.titleOn the Use of Quantum Reinforcement Learning in Energy-Efficiency Scenarioses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/en15166034
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional