Afficher la notice abrégée

dc.contributor.authorSchmidt, Arne
dc.contributor.authorMolina Soriano, Rafael 
dc.date.accessioned2022-09-16T08:44:22Z
dc.date.available2022-09-16T08:44:22Z
dc.date.issued2022-01-14
dc.identifier.citationA. Schmidt... [et al.]. "Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning," in IEEE Access, vol. 10, pp. 9763-9773, 2022, doi: [10.1109/ACCESS.2022.3143345]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76735
dc.description.abstractThe annotation of large datasets is often the bottleneck in the successful application of artificial intelligence in computational pathology. For this reason recently Multiple Instance Learning (MIL) and Semi Supervised Learning (SSL) approaches are gaining popularity because they require fewer annotations. In this work we couple SSL and MIL to train a deep learning classifier that combines the advantages of both methods and overcomes their limitations. Our method is able to learn from the global WSI diagnosis and a combination of labeled and unlabeled patches. Furthermore, we propose and evaluate an efficient labeling paradigm that guarantees a strong classification performance when combined with our learning framework. We compare our method to SSL and MIL baselines, the state-of-the-art and completely supervised training. With only a small percentage of patch labels our proposed model achieves a competitive performance on SICAPv2 (Cohen's kappa of 0.801 with 450 patch labels), PANDA (Cohen's kappa of 0.794 with 22,023 patch labels) and Camelyon16 (ROC AUC of 0.913 with 433 patch labels). Our code is publicly available at https://github.com/arneschmidt/ssl_and_mil_cancer_classification.es_ES
dc.description.sponsorshipEuropean Union's Horizon 2020 Research and Innovation Program through the Marie Skodowska Curie (Cloud Artificial Intelligence For pathologY (CLARIFY) Project) 860627es_ES
dc.description.sponsorshipSpanish Government PID2019-105142RB-C22es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleEfficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learninges_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860627es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2022.3143345
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional