Mostrar el registro sencillo del ítem

dc.contributor.authorViñán Ludeña, Marlon Santiago
dc.contributor.authorCampos Ibáñez, Luis Miguel 
dc.date.accessioned2022-09-15T10:33:12Z
dc.date.available2022-09-15T10:33:12Z
dc.date.issued2022-08-19
dc.identifier.citationViñán-Ludeña, M.S. and de Campos, L.M. (2022), "Discovering a tourism destination with social media data: BERT-based sentiment analysis", Journal of Hospitality and Tourism Technology, Vol. ahead-of-print No. ahead-of-print. [https://doi.org/10.1108/JHTT-09-2021-0259]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76716
dc.description.abstractPurpose – The main purpose of this paper is to analyze a tourist destination using sentiment analysis techniques with data from Twitter and Instagram to find the most representative entities (or places) and perceptions (or aspects) of the users. Design/methodology/approach – The authors used 90,725 Instagram posts and 235,755 Twitter tweets to analyze tourism in Granada (Spain) to identify the important places and perceptions mentioned by travelers on both social media sites. The authors used several approaches for sentiment classification for English and Spanish texts, including deep learning models. Findings – The best results in a test set were obtained using a bidirectional encoder representations from transformers (BERT) model for Spanish texts and Tweeteval for English texts, and these were subsequently used to analyze the data sets. It was then possible to identify the most important entities and aspects, and this, in turn, provided interesting insights for researchers, practitioners, travelers and tourism managers so that services could be improved and better marketing strategies formulated. Research limitations/implications – The authors propose a Spanish-Tourism-BERT model for performing sentiment classification together with a process to find places through hashtags and to reveal the important negative aspects of each place. Practical implications – The study enables managers and practitioners to implement the Spanish-BERT model with our Spanish Tourism data set that the authors released for adoption in applications to find both positive and negative perceptions. Originality/value – This study presents a novel approach on how to apply sentiment analysis in the tourism domain. First, the way to evaluate the different existing models and tools is presented; second, a model is trained using BERT (deep learning model); third, an approach of how to identify the acceptance of the places of a destination through hashtags is presented and, finally, the evaluation of why the users express positivity (negativity) through the identification of entities and aspects.es_ES
dc.description.sponsorshipSpanish Ministerio de Ciencia e Innovacion, Agencia Estatal de Investigacion PID2019-106758GB-C31es_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.language.isoenges_ES
dc.publisherEmeraldes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSocial mediaes_ES
dc.subjectDeep learninges_ES
dc.subjectTourismes_ES
dc.subjectSentiment analysises_ES
dc.subjectData analysises_ES
dc.titleDiscovering a tourism destination with social media data: BERT-based sentiment analysises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1108/JHTT-09-2021-0259
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional