Mostrar el registro sencillo del ítem

dc.contributor.authorSilva Rodríguez, Julio
dc.contributor.authorSchmidt, Arne
dc.contributor.authorMolina Soriano, Rafael 
dc.date.accessioned2022-09-13T09:04:41Z
dc.date.available2022-09-13T09:04:41Z
dc.date.issued2022-06-10
dc.identifier.citationJulio Silva-Rodríguez... [et al.]. Proportion constrained weakly supervised histopathology image classification, Computers in Biology and Medicine, Volume 147, 2022, 105714, ISSN 0010-4825, [https://doi.org/10.1016/j.compbiomed.2022.105714]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76669
dc.description.abstractMultiple instance learning (MIL) deals with data grouped into bags of instances, of which only the global information is known. In recent years, this weakly supervised learning paradigm has become very popular in histological image analysis because it alleviates the burden of labeling all cancerous regions of large Whole Slide Images (WSIs) in detail. However, these methods require large datasets to perform properly, and many approaches only focus on simple binary classification. This often does not match the real-world problems where multi-label settings are frequent and possible constraints must be taken into account. In this work, we propose a novel multi-label MIL formulation based on inequality constraints that is able to incorporate prior knowledge about instance proportions. Our method has a theoretical foundation in optimization with logbarrier extensions, applied to bag-level class proportions. This encourages the model to respect the proportion ordering during training. Extensive experiments on a new public dataset of prostate cancer WSIs analysis, SICAP-MIL, demonstrate that using the prior proportion information we can achieve instance-level results similar to supervised methods on datasets of similar size. In comparison with prior MIL settings, our method allows for ∼ 13% improvements in instance-level accuracy, and ∼ 3% in the multi-label mean area under the ROC curve at the bag-level.es_ES
dc.description.sponsorshipSpanish Government PID2019-105142RB-C2es_ES
dc.description.sponsorshipEuropean Commission 860627es_ES
dc.description.sponsorshipGeneralitat Valenciana/European Union through the European Regional Development Fund (ERDF) of the Valencian Community IDIFEDER/2020/030es_ES
dc.description.sponsorshipUniversitat Politecnica de Valenciaes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMultiple instance learninges_ES
dc.subjectHistology es_ES
dc.subjectProportiones_ES
dc.subjectInequality constraintses_ES
dc.subjectExtended log-barrieres_ES
dc.titleProportion constrained weakly supervised histopathology image classificationes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860627es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.compbiomed.2022.105714
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional