Afficher la notice abrégée

dc.contributor.authorRos Mulero, Antonio 
dc.date.accessioned2022-09-08T09:59:19Z
dc.date.available2022-09-08T09:59:19Z
dc.date.issued2021
dc.identifier.citationPublished version: J. Math. Soc. Japan 74(3): 813-828 (July, 2022). [DOI: 10.2969/jmsj/85898589]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76582
dc.description.abstractFor any compact Riemannian surface of genus three (Σ,ds2) Yang and Yau proved that the product of the first eigenvalue of the Laplacian λ1(ds2) and the area Area(ds2) is bounded above by 24π. In this paper we improve the result and we show that λ1(ds2)Area(ds2)≤16(4−√7)π≈21.668π. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value ≈21.414π.es_ES
dc.description.sponsorshipMINECO/FEDER grants no. MTM2017-89677-Pes_ES
dc.description.sponsorshipJunta Andalucía grants no. P06-FQM-01642 and P18-FR-4049es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOn the first eigenvalue of the laplacian on compact surfaces of genus threees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.2969/jmsj/85898589
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional