Afficher la notice abrégée

dc.contributor.authorPérez Valero, Eduardo 
dc.contributor.authorMorillas Gutiérrez, Christian Agustín 
dc.contributor.authorLópez Gordo, Miguel Ángel 
dc.contributor.authorCarrera Muñoz, Ismael
dc.contributor.authorLópez Alcalde, Samuel
dc.contributor.authorVílchez Carrillo, Rosa M.
dc.date.accessioned2022-09-07T08:17:19Z
dc.date.available2022-09-07T08:17:19Z
dc.date.issued2022-07-11
dc.identifier.citationPerez-Valero E... [et al.] (2022) An Automated Approach for the Detection of Alzheimer’s Disease From Resting State Electroencephalography. Front. Neuroinform. 16:924547. doi: [10.3389/fninf.2022.924547]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76554
dc.description.abstractEarly detection is crucial to control the progression of Alzheimer’s disease and to postpone intellectual decline. Most current detection techniques are costly, inaccessible, or invasive. Furthermore, they require laborious analysis, what delays the start of medical treatment. To overcome this, researchers have recently investigated AD detection based on electroencephalography, a non-invasive neurophysiology technique, and machine learning algorithms. However, these approaches typically rely on manual procedures such as visual inspection, that requires additional personnel for the analysis, or on cumbersome EEG acquisition systems. In this paper, we performed a preliminary evaluation of a fully-automated approach for AD detection based on a commercial EEG acquisition system and an automated classification pipeline. For this purpose, we recorded the resting state brain activity of 26 participants from three groups: mild AD, mild cognitive impairment (MCI-non-AD), and healthy controls. First, we applied automated data-driven algorithms to reject EEG artifacts. Then, we obtained spectral, complexity, and entropy features from the preprocessed EEG segments. Finally, we assessed two binary classification problems: mild AD vs. controls, and MCI-non-AD vs. controls, through leave-one-subject-out cross-validation. The preliminary results that we obtained are comparable to the best reported in literature, what suggests that AD detection could be automatically detected through automated processing and commercial EEG systems. This is promising, since it may potentially contribute to reducing costs related to AD screening, and to shortening detection times, what may help to advance medical treatment.es_ES
dc.description.sponsorshipPID2021-128529OA-I00 Spanish Ministry of Science, Innovation and Universitieses_ES
dc.description.sponsorshipEuropean Regional Development Fundses_ES
dc.description.sponsorshipBTIC- 352-UGR20es_ES
dc.description.sponsorshipOperative Program FEDER 2014–2020es_ES
dc.description.sponsorshipEconomy, Universities and Science Office of the Andalusian Regional Governmentes_ES
dc.language.isoenges_ES
dc.publisherFrontierses_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAlzheimer's disease es_ES
dc.subjectEEGes_ES
dc.subjectMachine learninges_ES
dc.subjectDisease detectiones_ES
dc.subjectClassification es_ES
dc.titleAn Automated Approach for the Detection of Alzheimer’s Disease From Resting State Electroencephalographyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fninf.2022.924547
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional