Afficher la notice abrégée

dc.contributor.authorAguirre Rodríguez, Julio 
dc.contributor.authorBraga Alarcón, Juan Carlos 
dc.date.accessioned2022-09-07T07:40:21Z
dc.date.available2022-09-07T07:40:21Z
dc.date.issued2022-07-04
dc.identifier.citationAguirre J, Baceta JI and Braga JC (2022) Coralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain). Front. Mar. Sci. 9:899877. doi: [10.3389/fmars.2022.899877]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76552
dc.description.abstractDuring the Paleocene/Eocene Thermal Maximum, ~55.6 Ma, the Earth experienced the warmest event of the last 66Ma due to amassive release of CO2. This event lasted for ~100 thousands of years with the consequent ocean acidification (estimated pH = 7.8-7.6). In this paper, we analyze the effects of this global environmental shift on coralline algal assemblages in the Campo and Serraduy sections, in the south-central Pyrenees (Huesca, N Spain), where the PETM is recorded within coastal-to-shallow marine carbonate and siliciclastic deposits. In both sections, coralline algae occur mostly as fragments, although rhodoliths and crusts coating other organisms are also frequent. Rhodoliths occur either dispersed or locally forming dense concentrations (rhodolith beds). Distichoplax biserialis and geniculate forms (mostly Jania nummulitica) of the order Corallinales dominated the algal assemblages followed by Sporolithales and Hapalidiales. Other representatives of Corallinales, namely Spongites, Lithoporella as well as Neogoniolithon, Karpathia, and Hydrolithon, are less abundant. Species composition does not change throughout the Paleocene/Eocene boundary but the relative abundance of coralline algae as components of the carbonate sediments underwent a reduction. They were abundant during the late Thanetian but became rare during the early Ypresian. This abundance decrease is due to a drastic change in the local paleoenvironmental conditions immediately after the boundary. A hardground at the top of the Thanetian carbonates was followed by continental sedimentation. After that,marine sedimentation resumed in shallow, very restricted lagoon and peritidal settings, where muddy carbonates rich in benthic foraminifera, e.g., milioliids (with abundant Alveolina) and soritids, and eventually stromatolites were deposited. These initial restricted conditions were unfavorable for coralline algae. Adverse conditions continued to the end of the study sections although coralline algae reappeared and were locally frequent in some beds, where they occurred associated with corals. In Serraduy, the marine reflooding was also accompanied by significant terrigenous supply, precluding algal development. Therefore, the observed changes in coralline algal assemblages during the PETM in the Pyrenees were most likely related to local paleoenvironmental shifts rather than to global oceanic or atmospheric alterations.es_ES
dc.description.sponsorshipSpanish Ministerio de Ciencia e Innovacioon PGC2018-099391-B-100es_ES
dc.description.sponsorshipJunta de Andalucia RNM-190es_ES
dc.description.sponsorshipBasque Government Research Programme PGC2018-099391-B-100 IT930-16es_ES
dc.language.isoenges_ES
dc.publisherFrontierses_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRhodolith bedses_ES
dc.subjectThermal maximumes_ES
dc.subjectPaleocene/Eocene boundaryes_ES
dc.subjectOcean acidificationes_ES
dc.subjectPyreneen basines_ES
dc.titleCoralline Algae at the Paleocene/Eocene Thermal Maximum in the Southern Pyrenees (N Spain)es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3389/fmars.2022.899877
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional