Mostrar el registro sencillo del ítem

dc.contributor.authorVenturini, Francesca
dc.contributor.authorMartos Núñez, María Vanesa 
dc.date.accessioned2022-09-06T07:51:05Z
dc.date.available2022-09-06T07:51:05Z
dc.date.issued2022-07-02
dc.identifier.citationFrancesca Venturini... [et al.]. Extraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oil, Journal of Food Engineering, Volume 336, 2023, 111198, ISSN 0260-8774, [https://doi.org/10.1016/j.jfoodeng.2022.111198]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/76535
dc.description.abstractOne of the main challenges for olive oil producers is the ability to assess oil quality regularly during the production cycle. The quality of olive oil is evaluated through a series of parameters that can be determined, up to now, only through multiple chemical analysis techniques. This requires samples to be sent to approved laboratories, making the quality control an expensive, time-consuming process, that cannot be performed regularly and cannot guarantee the quality of oil up to the point it reaches the consumer. This work presents a new approach that is fast and based on low-cost instrumentation, and which can be easily performed in the field. The proposed method is based on fluorescence spectroscopy and one-dimensional convolutional neural networks and allows to predict five chemical quality indicators of olive oil (acidity, peroxide value, UV spectroscopic parameters K270 and K232, and ethyl esters) from one single fluorescence spectrum obtained with a very fast measurement from a low-cost portable fluorescence sensor. The results indicate that the proposed approach gives exceptional results for quality determination through the extraction of the relevant physicochemical parameters. This would make the continuous quality control of olive oil during and after the entire production cycle a reality.es_ES
dc.description.sponsorshipEuropean Union?s Horizon 2020 Project H2020-MSCA-RISE-2020 101007702es_ES
dc.description.sponsorshipJunta de Andalucia-FEDER-Fondo de Desarrollo Europeo P18-H0-4700es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConvolutional Neural Networkses_ES
dc.subjectArtificial intelligence es_ES
dc.subjectMachine learninges_ES
dc.subjectFluorescence spectroscopyes_ES
dc.subjectOptical sensores_ES
dc.subjectOlive oil es_ES
dc.subjectQuality control 2010 MSCes_ES
dc.subject00-01es_ES
dc.subject99-00es_ES
dc.titleExtraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oiles_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101007702es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jfoodeng.2022.111198
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional