Show simple item record

dc.contributor.authorSun, Fengwu
dc.contributor.authorEspada Fernández, Daniel 
dc.date.accessioned2022-07-08T07:58:31Z
dc.date.available2022-07-08T07:58:31Z
dc.date.issued2022-06-17
dc.identifier.citationFengwu Sun... [et al.] 2022 ApJ 932 77. [https://doi.org/10.3847/1538-4357/ac6e3f]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/75881
dc.description.abstractWe present an ALMA-Herschel joint analysis of sources detected by the ALMA Lensing Cluster Survey (ALCS) at 1.15 mm. Herschel/PACS and SPIRE data at 100-500 mu m are deblended for 180 ALMA sources in 33 lensing cluster fields that are detected either securely (141 sources; in our main sample) or tentatively at S/N >= 4 with cross-matched HST/Spitzer counterparts, down to a delensed 1.15 mm flux density of similar to 0.02 mJy. We performed far-infrared spectral energy distribution modeling and derived the physical properties of dusty star formation for 125 sources (109 independently) that are detected at >2 sigma in at least one Herschel band. A total of 27 secure ALCS sources are not detected in any Herschel bands, including 17 optical/near-IR-dark sources that likely reside at z = 4.2 +/- 1.2. The 16th, 50th, and 84th percentiles of the redshift distribution are 1.15, 2.08, and 3.59, respectively, for ALCS sources in the main sample, suggesting an increasing fraction of z similar or equal to 1 - 2 galaxies among fainter millimeter sources (f(1)(1)(50) similar to 0.1 mJy). With a median lensing magnification factor of mu = 2.6(-0.8)(+2.6), ALCS sources in the main sample exhibit a median intrinsic star formation rate of 94(-54)(+84) M-circle dot yr(-1), lower than that of conventional submillimeter galaxies at similar redshifts by a factor of similar to 3. Our study suggests weak or no redshift evolution of dust temperature with L-IR < 10(12) L-circle dot galaxies within our sample at z similar or equal to 0 - 2. At L-IR > 10(12) L-circle dot, the dust temperatures show no evolution across z similar or equal to 1-4 while being lower than those in the local universe. For the highest-redshift source in our sample (z = 6.07), we can rule out an extreme dust temperature (>80 K) that was reported for MACS0416 Y1 at z = 8.31.es_ES
dc.description.sponsorshipNRAO Student Observing Support (SOS) award SOSPA7-022es_ES
dc.description.sponsorshipJWST/NIRCam contract NAS5-02105es_ES
dc.description.sponsorshipMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Sciencees_ES
dc.description.sponsorshipGrants-in-Aid for Scientific Research (KAKENHI) JP17H06130 JP18K03693 JP20H00181 JP20H05856 JP22H01260es_ES
dc.description.sponsorshipNAOJ ALMA Scientific Research grant 2017-06Bes_ES
dc.description.sponsorshipUK Research & Innovation (UKRI)es_ES
dc.description.sponsorshipScience & Technology Facilities Council (STFC) ST/T000244/1es_ES
dc.description.sponsorshipSpanish Government PGC2018-093499-B-I00es_ES
dc.description.sponsorshipMinistry of Science, Technology and Space (MOST), Israeles_ES
dc.description.sponsorshipNational Aeronautics & Space Administration (NASA) NAS 526555es_ES
dc.language.isoenges_ES
dc.publisherAmerican Astronomical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z similar or equal to 0.5-6es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3847/1538-4357/ac6e3f
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional